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ABSTRACT

ARTICLE INFORMATION

The examination of UPR (Unearned Premium Reserve), which accounts
for a significant amount of REC (Contractual Engagement Reserves)
in insurance matters, is a crucial component of actuarial and financial
management in insurance companies. We propose a solution based on
the Solvency II system that uses an internal model based on a stochastic
differential equation in order to apply the new international standard
IFRS’17 linked to insurance contracts. We use the Sim.DiffProc package
to produce statistical trajectories of the model by sampling. The analysis
focuses on the problem of censoring obstacles in the process. Based on
the model parameters, we investigate the barrier’s sensitivity. Before
the absorption barrier, we calculated the likelihood of ruin and the
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probability density of UPR life time.
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Introduction

The insurer’s promises to the insured and contract
beneficiaries are reflected in the RECs. These include, in
particular, the clauses pertaining to the payment of claims,
the mathematical provisions clauses in life insurance,
and the provisions pertaining to current risks in non-life
insurance [1]. We suggest a new modeling approach by
diffusion process or stochastic differential equation [2], [3]
of the volume of reserves in terms of dynamic structure
in continuous time of the UPR(t) upper bound (e.g. a
regulatory ceiling, for this final point), which is essentially
for the case of a study of the UPR(t).

In terms of the dynamic structure in continuous time of
the UPR(t), we provide a novel modeling approach for the
volume of reserves using a diffusion process or stochastic
differential equation. Since the UPR(t) cannot be negative,

Copyright: © 2025. This is an open-access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction
in any medium, provided the original author and
source are credited.

we incorporate a censorship into the model of the UPR(t)
to enable the imposition of reasonable bounds, such as an
upper constraint (such as a regulatory ceiling) or a lower
bound at zero. We examine risk of failure when the UPR(t)
or reserve hits a critical threshold, meaning the insurance
can no longer meet its obligations. When the UPR(t) falls
below a regulatory threshold, the insurer is required to
inject capital since there is a risk of insufficient provision.
We estimate the probability of ruin and see how sensitive
it is to the ideal barrier. Additionally, the optimal barrier’s
sensitivity to drift and diffusion parameters is examined.
The density of the random variable time of service till
absorption by the barrier is estimated.

UPR Classical Model
GWP (Gross Written Premium)

GWP is the total gross premiums issued by an insurer over
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a specific time period, before provisions or reinsurance are
subtracted.

GWP = direct premiums issued + premiums accepted in
reinsurance (1).

Growing GWP indicates business volume, but since some
premiums have not yet been paid, it does not always
indicate actual revenue.

L’ UPR (Unearned Premium Reserve)

The portion of premiums issued (GWP), that has not yet
been recorded as revenue, is known as UPR. It guarantees
that the insurer has enough money to pay claims in the
future.

General formula :

UPR=Y (Underwritten premiums.2sation of remaining coverage (2)

Total duration of the policy
Ahigh UPR indicates that a significant portion of the prices
have not yet been earned, which has an immediate impact
on rentability.

Financial results and technical provisions may be affected
by an inaccurate UPR estimate.

Proposed Diffusion Model of UPR

We propose a more accurate mathematical model of the
UPR 1in the form of a diffusion process U(t), t=0, which is
governed by the following stochastic differential equation,
in order to account for the effects of the time factor and
shocks on the financial market:

dU(t) = a.(GWP — U(t))dt + a. U(t)dW(t) (3)
Where:

a is an adjustment parameter from the UPR to the gross
premium issued (GWP).

o represents the volatility of the process.
W(t) is a Brownian motion modeling uncertainty.
U(t) Simulation Trajectories Using Sim.DiffProc

Before using the model with real data, simulation is a
crucial step to evaluate its computational performance
and sensitivity to the parameters a and o, which we can
determine once we have access to real data. The following
graph illustrates the simulation of a flow of UPR(t)
trajectories based on the model parameters.

GWP= 10 (Gross premium issued (millions of €)) a= 0.5
(Adjustment rate toward GWP)

o = 0.2 (Volatility)

U0 = -5 (Initial UPR (millions of €)) T= 1 (Simulation
horizon (1 year))

N =365 (Number of time steps (days)).

Simulation of UPR evolution

— mean path
o — bound of 95 parcent caffidghce

0.0 02 04 06 08 1.0

Time

Figure 1. Simulation of U(t) process

If a is high, the U(t) converges quickly to the GWP. If ¢
is high, the trajectories are more dispersed, which means
greater uncertainty.

Modeling by U(t) Diffusion Process With Censoring

By including the censoring limitations, we alter equation
3):

Reduced censorship: U(t) >0 (the UPR cannot be negative).
Upper bound (optional): U(t) < Umax (regulatory ceiling,
for example).

The graph in Fig.2 shows a simulation of 1000 trajectories,
corresponding to the size of a portfolio, with a regulatory
limit set at 7 million euros.

UPR with Censure (Umax=7)

UPR (millions 4'€)

— Maoyenne des simulations
— ---- Bamigres (0 et Umax)

40

T T T T T T
00 02 0.4 (s} 0.8 1.0

time(UPR_sim)

Figure 2. U(t) wth censure, Umax=7

This model offers better administration of technical
obligations by considering regulatory and actuarial
restrictions.

Diffusion Process Modeling of U(t) with Absorbing
Barrier L

The model of equation (3) is modified with the following
condition: If U(t) <L, then the process is stopped (the U(t)
falls below the critical threshold).
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UPR with Absorbent Barrier, L=4

PR (millions d'€)

time{UPR_sim)

Figure 3. U(t) with absorbent barrier, L=4

A trajectory is arrested (absorbed) when it reaches L.

If ¢ is high, more trajectories will reach L quickly (risk of
disaster).

Estimation of the probability of absorption

Pabs (T) is defined as the likelihood that U(t) will reach
L before T by:

Pabs (T) = P(inft€[0,T] U(t) <L)
This probability depends on the parameters:

o: Both the volatility and the absorption risk are not very
high.

o: A high adjustment rate lowers the risk of absorption.
U(0) and L: Absorption is probable if U(0) is near L.

The estimated probability of ruin for 6=0.4, L=4, M=5000,
and other unchanged parameters Pabs (T) = 0.2324.

Absorbed Trajectories

UPR (millions d'€)

00 02 04 06 08 10

time(UPR_sim)

Figure 4. Absorbed trajectories

We will investigate the effects of the absorbent barrier
L on

Pabs (T).

The effect of L on Pabs (T)

To see the relationship, Pabs (T) can be expressed as a
function of L.

Impact du choix de L sur P_abs(T)
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Figure 5. The effect of L on Pabs T
When L is small, Pabs T is close to 0 (absorption
peak).

Pabs T Increases significantly if L is close to U(0).
Pabs T = 0 when L deviates from U(0).

This enables the determination of the ideal critical
threshold for reducing the absorption risk.

Effect of a (adjustment parameter) and ¢ (volatility)
on the absorbance barrier L*(optimal barrier)

We're all set:

a) Change a and see the impact on the optimal L*; b)
Change o and see how it affects Lx.

c) Displaying the results in a graphic format.

Impact de a sur L*

Figure 6. Effect of a on L*

Effect of a: A higher o causes the process to return to
GWP more quickly, decreasing Pabs T

In order to make up for the lack of adjustment, a low «
requires a higher Lx.

Effectof o :
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A higher volatility increases the likelihood of absorp-
tion, which increases Lx.

A low volatility makes it possible to select a lower Lx*
without taking too much risk.

Impact de o sur L™

Figure 7. Effect of 0 on L*
Estimation of the density of the absorption time of
the barrier L: fptseld() of Sim.Diffproc

The time it takes for the processus U(t) to be absorbed
by the barrel L is a crucial aléatoire variable that
indicates the likely life time of the processus until it is
absorbed by the barrel L or L* (optimal). The module
Sim.DiffProc’s fptsdeld() function is well suited for
estimating this random variable.

t=inf t>0 U(t)<L (4)

An analytical form of the average absorption time is
provided by [2], [5]:

Et=202yU(0)Le -2ac2 y-GWP dy (5)

which is the Kolmogorov forward equation’s solution:
a GWP-udfdu+1202u2d2fdu2=-1 (6)

With the conditions at the bords:

f(L)=0 (Absorption en L)

and

f’(U(0))<0) ) to ensure a well-defined solution.

The integral (5) does not have an accurate analytical
expression. We can to evaluate it numerically, with high
computational cost and unstable results.

In order to solve this problem, we use statistical
estimation by the function —fptsdeld()|| of Sim.
DiffProc.

For this choice of parameters:
GWP =10, =0.5, 0=0.2, U(0)= 5, Tamx=10, L=4

M=1000 (Number of simulated trajectories),

Table 1. gives a statistics summary of t random variable

distribution

Mean 0.2199643(2years et 72 days)
Variance 0.0065811
Median 0.2199643
Mode 0.2765417
Estimated probabilty density of tau
3 -
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Figure 8. Estimated probability density of T
Conclusion

Big Data and volatile financial markets are ideal for the
suggested technique of complicated temporal dynamic
modeling by diffusion for UPR. The analysis of UPR
(Unearned Premium Reserve), a significant portion of
the volume of REC (Contractual Engagement Reserves)
in insurance matters, demonstrates the effectiveness
of the model proposed by Sim. DiffProc in terms of the
computational aspect ofactuarial and financial management
in insurance firms..

The likelihood of ruin could be calculated through
statistical analysis of the process under barrier limitations.
Additionally, the barrier’s sensitivity to the two factors o
of the drift coefficient and & of the volatility is examined.

We compute the probability distribution of the duration of
the provision until it is absorbed by a barrier that complies
with regulations. This high-performance statistical analysis
and modeling approach uses actual data after statistical
inference regarding the two parameters o and o, which
are subsequently replaced by their estimators. The results
can be applied to the company’s UPR(t) provisioning
process as a portfolio management strategy and as a tool
for informed decision-making.
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