
Open Access Journal of Computer Science and Engineering V1. I1. 2024 33

Introduction
Artificial intelligence (AI) is recent trend in technological
world, especially in computer science, in which artificial
neural network (ANN, NN) is one of important subjects of
AI. Essentially, ANN models or implements a complicated
function y = f(x) where x = (x1, x2,…, xm)T and y = (y1,
y2,…, yn)

T are vectors so that x and y are imitated by input
layer and output layer of ANN, respectively with note
that each layer is composed of units called neurons xi, yi.
The complication degree of function y = f(x) is realized
by hidden layers of ANN which are intermediated layers
between input layer and output layer. We denote:

Where Θ denotes parameters of ANN which are often
weights and biases. Because f(x | Θ) is essentially vector-
by-vector function whose input and output are vectors, it
should have denoted as f(x | Θ) but it is still denoted as f(x |
Θ) for convenience and moreover, input x and output y will

be matrices if their elements xi and yi are vectors. If there
are many enough hidden layers, ANN becomes a so-called
deep neural network (DNN) such that DNN is cornerstone
of the main subject of this report which is transformer
because transformer, as its name implies, is the highly
abstract and complicated version of function y = f(x). In
other words, a transformer will make the transformation
between complex and different objects if it is implemented
by DNN or set of DNNs according to viewpoint of DNN.
Although transformer can be applied into many areas,
especially machine translation and computer vision, this
report focuses on statistical machine translation (STM)
because complex and different objects x and y in STM
transformer are two sentences in two different languages
where x is source language sentence and y is target
language sentence. If ordering of elements xi / yi in vector
x / y specifying sentence is concerned as ordering of words
xi / yi in a sentence, transformer will relate to sequence
generation. Therefore, transformer as well as STM are

Open Access Journal of Computer Science and Engineering
Volume 1, Issue 1, 2024, PP: 33-50

www.aytinpublications.com
Research Article

Tutorial on Deep Transformer
Loc Nguyen
Loc Nguyen’s Academic Network, Vietnam.
*Corresponding Author: Loc Nguyen’s Academic Network, Vietnam.

Abstract
Development of transformer is a far progressive step in the long
journeys of both generative artificial intelligence (GenAI) and
statistical translation machine (STM) with support of deep neural
network (DNN), in which STM can be known as interesting result
of GenAI because of encoder-decoder mechanism for sequence
generation built in transformer. But why is transformer being
preeminent in GenAI and STM? Firstly, transformer has a so-called
self-attention mechanism that discovers contextual meaning of every
token in sequence, which contributes to reduce ambiguousness.
Secondly, transformer does not concern ordering of tokens in
sequence, which allows to train transformer from many parts of
sequences in parallel. Thirdly, the third reason which is result of
the two previous reasons is that transformer can be trained from
large corpus with high accuracy as well as highly computational
performance. Moreover, transformer is implemented by DNN which
is one of important and effective approaches in artificial intelligence
(AI) in recent time. Although transformer is preeminent because
of its good consistency, it is not easily understandable. Therefore,
this technical report aims to describe transformer with explanations
which are as easily understandable as possible..

Keywords: Transformer, Generative Artificial Intelligence, Statistical
Translation Machine, Sequence Generation, Self-Attention.

Aricle Information
Recieved: 13 September 2024

Accepted: 05 October 2024

Published: 08 October 224

Cite this article as:

Loc Nguyen. Tutorial on Deep Transformer.
Open Access Journal of Computer Science and
Engineering, 2024;1(1): 33-50.

Copyright: © 2024. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original author and source are credited.

Open Access Journal of Computer Science and Engineering V1. I1. 202434

Tutorial on Deep Transformer

inspired from sequence generation which, in turn, relates to
recurrent neural network (RNN) as well as long short-term
memory (LSTM) because sequence generation models are
often implemented by RNN or LSTM. The most standard
ANN/DNN called feedforward network (FFN) follows
the one-way direction from input layer to hidden layers to
output layer without reverse direction, which means that
there is neither connections from output layer to hidden
layers nor connections from hidden layers to input layers.
In other words, there is no cycle in FFN, which cause the
side-effect that it is difficult to model a sequence vector
x = (x1, x2,…, xm)T like a sentence in natural language
processing (NLP) because elements / words / terms /
tokens xi in such sequence/sentence vector have the same
structure and every connection xi → xi+1 of two successive
words xi and xi+1 is, actually, a cycle. This is the reason
that recurrent neural network (RNN) is better than FFN
to generate sequence. Therefore, we research transformer
after researching sequence generation which is concerned
after RNN is concerned. Note, sequence and sentence are
two exchangeable concepts in this research.

Suppose entire FNN is reduced into a state in RNN and
RNN is ordered list of neurons called sequence of neurons
and moreover, output of previous neuron xi–1 contributes to
input of current neuron xi. Namely, for formal definition,
given T time points t = 1, 2,…, T, then RNN is ordered
sequence of T states and each state is modeled by triple (xt,
ht, ot) called state (xt, ht, ot) where xt, ht, and ot represent
input layer, hidden layer, and output layer, respectively.
Without loss of generality, let xt, ht, and ot represent input
neuron, hidden neuron, and output neuron, respectively
when a layer is represented by one of its neurons. Please
pay attention that xt, ht, and ot are represented vectors of the
tth word in sentence x = (x1, x2,…, xm)T modeled by RNN in
context of NLP because a word is modeled by a numeric
vector in NLP. Therefore, the aforementioned sentence x
= (x1, x2,…, xm)T is a matrix indeed but x is mentioned as
a vector. Exactly, x is vector of vectors, which leads to
the convention that its elements are denoted by bold letter
such as xi or xt because such elements are variable vectors
representing words. Note, a word in NLP can be mentioned
as term or token.

Note, the subscript “T” denotes vector/matrix transposition
operator. Whether the sentence / sequence is denoted
as vector notation x or matrix notation X belongs to
contextual explanations. Recall that transformer as well
as STM are inspired from sequence generation which, in
turn, is related to recurrent neural network (RNN) as well
as long short-term memory (LSTM) because sequence

generation models are often implemented by RNN or
LSTM. Function y = f(x | Θ) implemented by DNNs such
as RNN and LSTM is also called generator because it is
sequence generation model indeed. Therefore, although
transformer is different from RNN and LSTM, all of them
are denoted by generator y = f(x | Θ) because they are
sequence generation models indeed.

The tth element/word in sequence/sentence x = (x1, x2,…,
xm)T is represented by the tth state (xt, ht, ot) of RNN where
xt is the tth input word and ot is the tth output word. If RNN
models x = (x1, x2,…, xm)T, then T = m and so, if RNN
models y = (y1, y2,…, yn)

T, then T = n. By a convention,
word and sentence are mentioned as token and sequence,
respectively. Moreover, x is called source sequence and y is
called target sequence or generated sequence. Mathematical
equation to update RNN is specified as follows (Wikipedia,
Recurrent neural network, 2005):

Where Wh, Uh, and Wo are weight matrices of current
hidden neuron ht, previous hidden neuron ht–1, and current
output neuron ot, respectively whereas bh and bo are bias
vectors of ht and ot, respectively. Moreover, σh(.) and σo(.)
are activation functions of ht and ot, respectively, which
are vector-by-vector functions.

RNN copes with the problem of vanishing gradient when
learning a long RNN of many states and so, long short-
term memory (LSTM) is proposed to restrict the problem
of vanishing gradient. State in RNN becomes cell in LSTM
and so, given T time points t = 1, 2,…, T, let the pair (ct, ht)
denote LSTM cell at current time point t where ct represents
real information stored in memory and ht represents clear-
cut information that propagates through next time points.
A cell (ct, ht) has four gates such as forget gate ft, input gate
it, output gate ot, and cell gate gt. At every time point t or
every iteration t, cell (ct, ht) updates its information based
on these gates as follows:

Note, W(.) and U(.) are weight matrices whereas b(.) are bias
vectors, which are parameters. Because core information
of cell (ct, ht) including ct and ht is calculated without
any parameters, the problem of vanishing gradient can be
alleviated when such gradient is calculated with regard to
parameters such as weight matrices and bias vectors.

Open Access Journal of Computer Science and Engineering V1. I1. 2024 35

Tutorial on Deep Transformer

In general, when a sequence is modeled by a RNN or a
LSTM, it is possible to generate a new sequence after RNN or
LSTM is trained by backpropagation algorithm associated
with stochastic gradient descent (SGD) algorithm. In other
words, RNN and LSTM are important generation models
although transformer is the main subject in this report
because STM is, essentially, a sequence generation model
that generates a new sentence in target language from
a sentence in source language when sentence in NLP is
represented by sequence. Because RNN and LSTM have
the same methodological ideology, RNN is mentioned
rather than LSTM because RNN is simpler one but they
can be applied by exchangeable manner. For instance,
given simplest case that source sequence X = (x1, x2,…,
xm)T and target sequence also called generated sequence Y
= (y1, y2,…, yn)

T have the same length m = n.

Generation model f(x | Θ) is implemented by a RNN
of n states (xt, ht, ot) so that ot = yt for all t from 1 to n.
After RNN was trained from sample by backpropagation
algorithm associated with SGD, given source sequence
X = (x1, x2,…, xn)

T, target sequence Y = (y1, y2,…, yn)
T is

generated easily by evaluating n states of RNN.

Such generation process with n-state RNN is depicted by
following figure:

The next section will focus on sequence generation and
attention which is a mechanism that improves generation
process.

Sequence Generation and Attention
Recall that transformer as well as statistical translation
machine (STM) are inspired from sequence generation

Figure 1.1. RNN generation model

which, in turn, is related to recurrent neural network (RNN)
as well as long short-term memory (LSTM) because
sequence generation models are often implemented by
RNN or LSTM. Function y = f(x | Θ) implemented by
DNNs such as RNN and LSTM is also called generator
because it is sequence generation model indeed. Because
RNN and LSTM have the same methodological ideology,
RNN is mentioned rather than LSTM.

Note, Θ denotes parameters of ANN which are often weights
and biases whereas sequence is denoted as vector notation x
or matrix notation X belonging to contextual explanations.
This section focuses on sequence generation models such
as RNN and LSTM before mentioning advanced concepts
of transformer because, anyhow, transformer is next
evolutional step of sequence generation models, especially
in STM and natural language processing (NLP).

Given simplest case aforementioned that source sequence X
= (x1, x2,…, xm)T and target sequence also called generated
sequence Y = (y1, y2,…, yn)

T have the same length m = n.

Generation model f(X | Θ) is implemented by a RNN
of n states (xt, ht, ot) so that ot = yt for all t from 1 to n.
After RNN was trained from sample by backpropagation
algorithm associated with stochastic gradient descent
(SGD) algorithm, given source sequence X = (x1, x2,…, xn)
T, target sequence Y = (y1, y2,…, yn)

T is generated easily by
evaluating n states of RNN.

The simplest RNN generation needs to be extended if
source sequence X is incomplete, for example, X has k token
vectors x1, x2,…, xk where k < n. When X is incomplete,
without loss of generality, given current output yt, it is
necessary to predict the next output xt+1 (with suppose t >
k). The prediction process, proposed by Graves (Graves,
2014), is based on estimating the predictive probability
P(xt+1 | yt) which is conditional probability of next input
xt+1 given current output yt. As a result, RNN generation
model is extended as follows (Graves, 2014, p. 4):

Following figure depicts the prediction model proposed by
Graves (Graves, 2014, p. 3):

Open Access Journal of Computer Science and Engineering V1. I1. 202436

Tutorial on Deep Transformer

The problem here is how to specify predictive probability
P(xt+1 | yt). In the most general form, suppose joint
probability P(xt+1, yt) is parameterized by multivariate
normal distribution with mean vector μ and covariance
matrix Σ.

It is easy to estimate μ and Σ to determine P(xt+1, yt)
from sample by maximum likelihood estimation (MLE)
method, for instance. Consequently, predictive probability
P(xt+1 | yt) is determined based on joint probability P(xt+1,
yt) as multivariate normal distribution with mean vector μ12
and covariance matric Σ12 specified as follows (Hardle &
Simar, 2013, p. 157):

Because predictive probability P(xt+1 | yt) gets highest at
the mean μ12, it is possible to estimate xt+1 given yt by μ12.

The generation model above has only one RNN because
source sequence X and target sequence Y have the
same length. Some real applications, especially STM
applications, require that lengths of X and Y are different,
m ≠ n. This problem is called different-length problem.

Solution for different-length problem is to specify two
RNNs: a RNN called encoder for X generation and the
other one called decoder for Y generation. Intermediate
vector a is proposed to connect encoder and decoder, which
is called context vector in literature (Cho, et al., 2014,
p. 2). The encoder-decoder mechanism is an important
progressive step in STM as well as generative artificial
intelligence (GenAI) because there is no requirement of
mapping token-by-token between two sequences X and Y,
which is much more important than solving the different-
length problem. On the other hand, sequence generation as
well as its advanced development – transformer can also
be classified into domain of GenAI.

According to Cho et al. (Cho, et al., 2014), context variable
a, which is last output of encoder, becomes input of
decoder. Following figure depicts encoder-decoder model
proposed by Cho et al. (Cho, et al., 2014, p. 2) with note
that context vector a has fixed length.

Figure 2.1. RNN prediction model

Figure 2.2. Encoder-decoder model with fixed-length context

Open Access Journal of Computer Science and Engineering V1. I1. 2024 37

Tutorial on Deep Transformer

Note, both context and current token t are inputs of next
token t+1. Moreover, there is an assignment yt+1 = ot.
Therefore, each tth state of decoder is modified as follows:

Where Vh is weight matrix for context variable a. Moreover,
it may be not required to calculate output for each tth state
of encoder. It may be only necessary to calculate hidden
value of encoder.

In STM, given source sequence X and t target tokens y1,
y2,…, yt, it is necessary to predict the next target token yt+1.
In other words, predictive probability P(yt+1 | Θ, X, y1, y2,…,
yt) needs to be maximized so as to obtain yt+1. Predictive
probability P(yt+1 | Θ, X, y1, y2,…, yt) is called likelihood
at the tth state of decoder. Consequently, parameter Θ of
encoder-decoder model is maximizer of such likelihood.

Note, parameter Θ represents weight matrices and biases
of RNN. By support of RNN and context vector a with
implication of Markov property, likelihood P(yt+1 | Θ, X,
y1, y2,…, yt) can become simpler:

Likelihood P(yt+1 | Θ, X, y1, y2,…, yt), which represents
statistical language model, is object of maximum likelihood
estimation (MLE) method for training encoder-decoder
model (Cho, et al., 2014, p. 2). For example, the likelihood
can be approximated by standard normal distribution,
which is equivalent to square error function, as follows:

Where f(X, y1, y2,…, yt | Θ) denotes encoder-decoder chain.

Therefore, training encoder-decoder model begins with
MLE associated with backpropagation algorithm and SGD
from decoder back to encoder.

Alternately, in STM with predefined word vocabulary, a
simple but effective way to train encoder-decoder model is
to replace likelihood P(yt+1 | Θ, X, y1, y2,…, yt) by a so-called
linear component which is a feedforward network (FFN).
Exactly, FNN maps the (t+1)th target token specified by
token vector yt+1 to a weight vector w whose each element
wi (0 ≤ wi ≤ 1) is weight of ith token (Alammar, 2018).

Length of weight vector w is the cardinality |Ω| where Ω
is the vocabulary containing all tokens. After token weight
vector w is determined, it is easily converted into output
probability vector p = (p1, p2,…, p|Ω|)

T where each element
pi is probability of the ith token in vocabulary given the
(t+1)th target token (Alammar, 2018).

Following figure depicts linear component.

Figure 2.3. Linear component of encoder-decoder model

Open Access Journal of Computer Science and Engineering V1. I1. 202438

Tutorial on Deep Transformer

It is interesting that likelihood P(yt+1 | Θ, X, y1, y2,…, yt)
can be defined as output probability vector p = (p1, p2,…,
p|Ω|)

T. If the ith token is issued, its probability pt is 1 and
other probabilities are 0.

Consequently, training encoder-decoder model begins
with training linear component FFN(yt+1) back to
training decoder back to training encoder, which follows
backpropagation algorithm associated stochastic gradient
descent (SGD) method. Concretely, the following cross-
entropy L(p | Θ) is minimized so as to train FFN(yt+1).

Where Θ is parameter of FFN(yt+1) and the vector q =
(q1, q2,…, q|Ω|)

T is binary vector from sample whose each
element qi has binary values {0, 1} indicating whether the
ith token/word exists. For example, give sequence/sentence
(“I”, “am”, “a”, “student”)T, if there is only one token/word
“I” in sample sentence, the binary vector will be q = (1, 0,
0, 0)T. If three words “I”, “am”, and “student” are mutually
existent, the binary vector will be q = (1, 1, 0, 1)T. When
SGD is applied into minimizing the cross-entropy, partial
gradient of L(p | Θ) with regard to wj is:

Where,

Proof,

Due to:

We obtain:

So that gradient of L(p | Θ) with regard to w is:

Therefore, parameter Θ is updated according to SGD
associated with backpropagation algorithm:

Where γ (0 < γ ≤ 1) is learning rate. Please pay attention

that ordering of source tokens is set from the end token
back to the beginning token so that null tokens specified by
zero vectors are always in the opening of sequence.

When encoder-decoder model is developed, context vector
a becomes a so-called attention. The main difference
between context vector and attention vector is that
attention vector is calculated dynamically (customized)
for each decoder state. Moreover, that context vector
has fixed length restricts its prospect. Anyhow, attention
mechanism fosters target sequence to pay attention to
source sequence. In general, attention of a decoder state
(token) is weighted sum of all encoder states (tokens) with
regard to such decoder state. Suppose encoder RNN is
denoted as follows:

For convenience, let s1, s2,…, sm denote m outputs of
encoder such that:

Let score(si, ht) be score of encoder output si and decoder
hidden ht where score(si, ht) measures how much the ith
token of source sequence modeled by encoder is close to
the tth token of target sequence modeled by decoder. As
usual, score(si, ht) is defined as dot product of si and ht
(Voita, 2023).

Where decoder hidden ht is:

Let weight(si, ht) be weight of encoder output si and decoder
hidden ht over m states of encoder, which is calculated
based on soft-max function (Voita, 2023):

As a result, let at be attention of source sequence X = (x1,
x2,…, xn)

T with regard to the tth token of target sequence
Y = (y1, y2,…, yn)

T, which is weighted sum of all encoder
outputs with regard to such tth target token (Voita, 2023).

Obviously, at becomes one of inputs of the tth token of
target sequence Y = (y1, y2,…, yn)

T such that:

Open Access Journal of Computer Science and Engineering V1. I1. 2024 39

Tutorial on Deep Transformer

Where Vo is weight matrix of attention at. In general,
decoder RNN associated with the attention mechanism
called Luong attention (Voita, 2023) is specified as
follows:

Where,

Following figure depicts encoder-decoder model with
attention (Voita, 2023):

Figure 2.4. Encoder-decoder model with attention

Training encoder-decoder model with support attention is
still based on likelihood maximization or linear component
aforementioned. Attention mechanism mentioned here does
not ever concern internal meaning of every token, which
only fosters target sequence to pay attention at source
sequence. The attention that concerns internal meanings
of tokens is called self-attention which is an advancement
of attention. In other words, self-attention fosters source
sequence to pay attention to itself. Transformer mentioned
in the next section will implement self-attention.

Transformer
Transformer, developed by Vaswani et al. (Vaswani,
et al., 2017) in the famous paper “Attention Is All You

Need”, has also attention mechanism and encoder-decoder
mechanism like the aforementioned generation model
that applies recurrent neural network (RNN) and short-
term memory (LSTM) but transformer does not require
to process successively tokens of sequence in token-
by-token ordering, which improves translation speed.
Moreover, another strong point of transformer is that it has
self-attention which is the special attention that concerns
internal meanings of its own tokens. Transformer supports
both attention and self-attention, which fosters target
sequence to pay attention to both source sequence and
target sequence and also fosters source sequence to pay
attention to itself. Besides, transformer does not apply RNN
/ LSTM. Note that word and sentence in natural language
processing (NLP) are mentioned as token and sequence,
respectively by a convention, so that source sequence X
is fed to encoder and target sequence Y is fed to decoder
where X and Y are concerned exactly as matrices.

Each encoder as well as each decoder in transformer are
composed of some identical layers. The number of layer
which is developed by Vaswani et al. (Vaswani, et al., 2017,
p. 3) is 6. Each encoder layer has two sublayers which are
multi-head attention sublayer and feedforward sublayer
whereas each decoder layer has three sublayers which are
masked multi-head attention sublayer, multi-head attention
sublayer, and feedforward sublayer. Every sublayer is
followed by association of residual mechanism and layer
normalization, denoted as Add & Norm = LayerNorm(X
+ Sublayer(X)). The residual mechanism means that
sublayer Sublayer(X) is added with its input as the sum
X + Sublayer(X). Note, Sublayer(X) can be attention
sublayer or feedforward sublayer. The layer normalization
is to normalize such sum. Following figure summarizes
transformer developed by Vaswani et al. (Vaswani, et al.,
2017, p. 3).

Feedforward sublayer also called feedforward network
(FNN) aims to fine-tune attention by increasing degree of
complication.

Encoder and its attention are described firstly when multi-
head attention is derived from basic concept of attention.
Attention (self-attention) proposed by Vaswani et al.
(Vaswani, et al., 2017) is based on three important matrices
such as query matrix Q, key matrix K, and value matrix V.
The number of rows of these matrices is m which is the
number of tokens in sequence matrix X = (x1, x2,…, xm)
T but the number of columns of query matrix Q and key
matrix K is dk whereas the number of columns of value
matrix V is dv. The number m of token is set according to
concrete applications, which is often the number of words

Open Access Journal of Computer Science and Engineering V1. I1. 202440

Tutorial on Deep Transformer

of the longest sentence. In literature (Vaswani, et al., 2017),
dk and dv are called key dimension and value dimension,
respectively. Dimensions of matrices Q, K, and V are m x
dk, m x dk, and m x dv, respectively (Vaswani, et al., 2017),
(Wikipedia, Transformer (deep learning architecture),
2019).

Where,

Suppose every token vector xi in sequence matrix X = (x1,
x2,…, xm)T has dm elements such that dm is called model
dimension which is often 512 in NLP.

Query matrix Q, key matrix K, and value matrix V are

determined by products of sequence matrix X and query
weight matrix WQ, key weight matrix WK, value weight
matrix WV.

Of course, dimensions of weight matrices WQ, WK, and
WV are dm x dk, dm x dk, and dm x dv, respectively. All of
them have dm rows. Matrices WQ and WK have dk columns
whereas matrix WV have dv columns.

Attention is calculated based on scaled product of query
matrix Q, key matrix K, and value matrix V in order to
make effects on value matrix V specifying real sequence
by probabilities and moreover, these probabilities are

Figure 3.1. Architecture of transformer

Open Access Journal of Computer Science and Engineering V1. I1. 2024 41

Tutorial on Deep Transformer

calculated by matching query matrix Q specifying query
sequence and key matrix K specifying key sequence, which
is similar to searching mechanism. These probabilities are
also based on soft-max function, which implies weights
too. Moreover, attention focuses on all tokens of sequence,
which improves meaningful context of sentence in NLP.
Given matrices Q, K, and V, attention of Q, K, and V is
specified as follows:

Note, the subscript “T” denotes vector/matrix transposition
operator. It is easy to recognize this attention is self-
attention of only one sequence X via Q, K, and V which are
essentially calculated from X and weight matrices WQ, WK,
and WV. Note, self-attention concerns internal meanings of
its own tokens. Transformer here fosters source sequence
to pay attention to itself. The reason of dividing product
QKT by the scaling factor is to improve convergence
speed in training transformer. Before explaining how to
calculate weight / probability matrix , it is
necessary to skim the product QKT of query matrix Q and
key matrix K which aims to match query sequence and key
sequence.

The dot product qikj
T which indicates how much the query

vector qi matches or attends mutually the key vector kj is
specified as follows:

Probability matrix is
specified as follows:

The ith row of probability matrix includes

weights / probabilities that the ith token is associated with
all tokens including itself with note that is
m x m matrix, specified by weight/probability vector pi.
It is necessary to explain the ith row of probability matrix

 which is the following row vector:

Each probability pij, which is weight indeed, is calculated
by soft-max function as follows:

Where exp(.) is natural exponential function. Therefore,
probability matrix is totally determined:

Where,

Self-attention of Q, K, and V is totally determined as
follows:

Where,

Note, is the jth column vector of value matrix V. Of
course, dimension of self-attention Attention(Q, K, V) is m
x dv having m rows and dv columns. Attention Attention(Q,
K, V) is also called scaled dot product attention because
of dot product qikj

T and scaling factor . Each row
ai = (ai1, ai2,…,)T of Attention(Q, K, V), which is a
dv-length vector, is self-attention of the ith token which
is contributed by all tokens via scaled dot products QKT.
Therefore, the preeminence of self-attention is that self-
attention concerns all tokens in detail instead of concerning
only sequence and the self-attention ai = (ai1, ai2,…,
)T of the ith token is attended by all tokens. For example,
given sentence “Jack is now asleep, because he is tired.”,
the word “he” is strongly implied to the word “Jack” by
self-attention of the word “he” although the word “he” is
ambiguous. Following figure (Han, et al., 2021, p. 231)
illustrates the self-attention of the word “he” in which
each strength of implication of another word (accept itself

Open Access Journal of Computer Science and Engineering V1. I1. 202442

Tutorial on Deep Transformer

“he”) to the word “he” is indicated by strong degree of
connection color.

Figure 3.2. Self-attention example

Vaswani et al. (Vaswani, et al., 2017) proposed an
improvement of attention called multi-head attention
which is concatenation of many attentions. The existence
of many attentions aims to discover as much as possible
different meanings under attentions and the concatenation
mechanism aims to unify different attentions into one
self-attention. Following equation specifies multi-head
attention with note that the multi-head attention here is
self-attention.

Where,

Of course, Wi
Q, Wi

K, and Wi
V are query weight matrix, key

weight matrix, and value weight matrix for the ith head,
respectively whereas WO is the entire weight matrix whose
dimension is often set as hdv x dm so that multi-head attention
MultiheadAttention(X) is m x dm matrix which is the same
to dimension of input sequence matrix X = (x1, x2,…, xm)T.
Note that the concatenation mechanism follows horizontal
direction so that the concatenation concatenate(head1,
head2,…, headh) is m x hdv matrix when each head headi
= Attention(Qi, Ki, Vi) is m x dv matrix. There are h heads
(attentions) in the equation above. In practice, h is set so
that hdv = dm which is model dimension. Recall that dm is
often 512 in NLP. For easy illustration, the concatenation
of h attentions is represented as m x hdv as follows:

Obviously, weight matrix WO is hdv x dm matrix so that
multi-head attention MultiheadAttention(X) is m x dm
matrix, as follows:

After multi-head attention goes through residual mechanism
and layer normalization of attention sublayer, it is fed to
feedforward sublayer or feedforward network (FFN) to
finish the processing of encoder. Let EncoderAttention(X)
be output of encoder which is considered as attention:

If there is a stack of N encoders, the process above is
repeated N times. In literature (Vaswani, et al., 2017), N is
set to be 6. Without loss of generality, we can consider N =
1 as simplest case for easy explanations.

Now it is essential to survey how decoder applies encoder
attention EncoderAttention(X) into its encoding task.
Essentially, decoder has two multi-head attentions such
as masked multi-head attention and multi-head attention
whereas encoder has only one multi-head attention. Their
attentions are similar to encoder’s attention but there is a
slight difference. Firstly, decoder input sequence Y = (y1,
y2,…, yn)

T is fed to masked multi-head attention sublayer
with note that Y is n x dm matrix with support that model

Open Access Journal of Computer Science and Engineering V1. I1. 2024 43

Tutorial on Deep Transformer

dimension dm, which is often set to be 512 in natural
language processing (NLP), may not be changed with
regard to decoder. Because masked multi-head attention
is composed by concatenation of masked head attentions
by the same way of encoder, we should concern masked
head attention. Sequence Y should have n = m tokens
like sequence X in practice. This is necessary because the
length m = n is the largest number of possible tokens in any
sequence. For shorter sentences in NLP, redundant tokens
are represented by zeros. Moreover, most of parameters
(weight matrices) of encoder and decoder are independent
from m and n, especially in the case m = n.

There is a principle that a token yi in sequence Y does
not know its successive tokens yi+1, yi+2,…, yn with note
that these tokens are called unknown tokens for token yi,
which causes that soft-max function needs to be added a
mask matrix M whose unknown positions are removed by
setting them to be negative infinites because evaluation of
negative infinite by exponential function is zero. Masked
attention is self-attention too.

Where masked matrix M is triangle matrix with negative
infinites on upper part and zeros on lower part as follows:

Note,

Where WQ, WK, and WV are weight matrices with note that
they are different from the ones of encoder. Dimensions of
weight matrices WQ, WK, and WV are dm x dk, dm x dk, and dm
x dv, respectively. Dimensions of matrices Q, K, and V are
n x dk, n x dk, and n x dv, respectively whereas dimension of
masked matrix M is n x dm. We have QKT is n x n matrix:

Recall that the purpose of masked matrix M is to remove
the affections of current token from its after tokens such
that:

Where,

Therefore, masked attention is determined as follows:

Where attention element aij is calculated by the
aforementioned way:

Dimension of masked attention MaskedAttention(Y)
is n x dv having n rows and dv columns. Following
equation specifies masked multi-head attention which is
concatenation of some masked attentions.

Where,

Please pay attention that weights matrices Wi
Q, Wi

K, Wi
V,

and WO are different from the ones of encoder. Dimensions
of Wi

Q, Wi
K, Wi

V, and WO are dm x dk, dm x dk, dm x dv, and
hdv x dm so that dimension of masked multi-head attention
MaskedMultiheadAttention(Y) is n x dm. Residual
mechanism and layer normalization are applied into
masked multi-head attention too:

Because mechanism of multi-head attention of decoder is
relatively special, it is called complex multi-head attention

Open Access Journal of Computer Science and Engineering V1. I1. 202444

Tutorial on Deep Transformer

for convention. Because complex multi-head attention is
composed by concatenation of some complex attentions
by the same way of encoder, we should concern complex
attention.

Query matrix Q and key matrix K of complex attention
are products of encoder attention EncoderAttention(X)
and query weight matrix UQ and key weight matrix UK,
respectively.

Where T is transformation matrix whose dimension is n
x m. If n = m, matrix T will be removed. Value matrix
V of complex attention is product of masked multi-head
attention and value weight matrix UV.

Dimensions of weight matrices UQ, UK, and UV are dm x dk,
dm x dk, and dm x dv, respectively. Following figure depicts
Attention(X, Y) in general view.

Figure 3.3. Decoder attention Attention(X, Y) in general view

Transformer here fosters target sequence to pay attention
to itself and source sequence by masked self-attention
and encoder attention. Of course, after complex attention
is calculated, multi-head attention of decoder (complex
multi-head attention) is totally determined.

Where,

Of course, Ui
Q, Ui

K, and Ui
V are query weight matrix, key

weight matrix, and value weight matrix of the ith head,

respectively whereas UO is entire weight matrix and
T is transformation matrix. Because encoder attention
EncoderAttention(X) is m x dm matrix, dimension of
transformation matrix T is n x m. If n = m, matrix T will
be removed. In practice, it is necessary to set n = m.
Dimensions of Ui

Q, Ui
K, Ui

V, and UO are dm x dk, dm x dk, dm
x dv, and hdv x dm so that dimension of multi-head attention
MultiheadAttention(X, Y) is n x dm. Residual mechanism
and layer normalization are applied into decoder multi-
head attention too:

Let Z be output of decoder which is decoder attention too,
we obtain:

Where FFN denotes feedforward network or feedforward
sublayer. If there is a stack of N decoders, the process
above is repeated N times. In literature (Vaswani, et al.,
2017), N is set to be 6. Without loss of generality, we can
consider N = 1 as simplest case for easy explanations.
Note, dimension of Z is n x dm. Model dimension dm is
often set to be 512 in NLP.

In context of statistical translation machine (STM), it is
necessary to calculate probabilities of words (tokens) in
vocabulary Ω. Because these probabilities are calculated
based on soft-max function, it is first to map decoder
output matrix Z into weight vector w = (w1, w2,…, w|Ω |)
T where every element wi of vector w is weight of the ith
word in vocabulary Ω. The mapping is implemented by
a feedforward network (FNN) called linear component
in literature (Vaswani, et al., 2017, p. 3). In other words,
input of linear component is sequence matrix Z whereas
its output is weight vector w (Alammar, 2018). Please
pay attention that the length of w is the number of words
(tokens) in vocabulary Ω and so, w is also called token/
word weight vector.

In practice, Z is flattened into long vector because w is
vector too so that FNN can be implemented. After token
weight vector w is determined, it is easily converted into
output probability vector p = (p1, p2,…, p|Ω|)

T where each
element pi is probability of the ith word/token in vocabulary
when sentence/sequence Z is raised (Alammar, 2018).
If the tth word is issued, its probability pt is 1 and other
probabilities are 0.

Consequently, the next token which is predicted in STM
for example is the one whose probability is highest, which

Multihead Attention (x,y) =Layer Norm (Masked
Multihead Attention(Y) + Masked Multihead(x,y))

Z=Decoder Attention (x,y) =Layer Norm (Masked
Multihead Attention(Y) + FFN(Masked Multihead(x,y))

Open Access Journal of Computer Science and Engineering V1. I1. 2024 45

Tutorial on Deep Transformer

means that the largest element in p need to be found for STM
translation after linear component w and output probability
p are evaluated given Z which in turn determined based on
source sequence X and target sequence Y via mechanism
encoder/decoder and attention.

It is not difficult to learn linear component FFN(Z) by
backpropagation algorithm associated stochastic gradient
descent (SGD) method. Concretely, the following cross-
entropy L(p | Θ) is minimized so as to train FFN(Z).

Where Θ is parameter of FFN(Z) and the vector q = (q1,
q2,…, q|Ω|)

T is binary vector from sample whose each
element qi has binary values {0, 1} indicating whether the
ith token/word exists. For example, give sequence/sentence
(“I”, “am”, “a”, “student”)T, if there is only one token/word
“I” in sample sentence, the binary vector will be q = (1, 0,
0, 0)T. If three words “I”, “am”, and “student” are mutually
existent, the binary vector will be q = (1, 1, 0, 1)T. When
SGD is applied into minimizing the cross-entropy, partial
gradient of L(p | Θ) with regard to wj is:

Where,

Proof,

Due to:

We obtain:

So that gradient of L(p | Θ) with regard to w is:

Therefore, parameter Θ is updated according to SGD
associated with backpropagation algorithm:

Where γ (0 < γ ≤ 1) is learning rate.

For STM example, given French source sentence “Je suis
étudiant” (Alammar, 2018) is translated into English target
sentence “I am a student” (Alammar, 2018) by transformer
which is trained with corpus before (transformer was

determined), which goes through following rounds:

Round 1:

French source s-	 entence “Je suis étudiant” coded
by sentence/sequence matrix X = (x1 = c(“<bos>”),
x2 = c(“je”), x3 = c(“suis”), x4 = c(“étudiant”), x5 =
c(“<eos>”))T where c(.) is embedding numeric vector of
given word with note that words “<bos>” and “<eos>”
are special predefined words indicating the beginning
of sentence and the end of sentence, respectively. As
a convention, c(.) is called word/token vector whose
dimension can be dm=512. If predefined sentence
length is longer, redundant word vectors are set to
be zeros, for example, let x6 = 0, x7 = 0,…, x100 = 0
given the maximum number words in sentence is 100.
These zero vectors do not affect decoder evaluation
and training parameters.

Source sequence -	 X is fed to encoder so as to produce
encoder attention EncoderAttention(X).

Round 2:

English target sentence is coded by sequence/matrix -	 Y
= (y1 = c(“<bos>”))T. If predefined sentence length is
longer, redundant word vectors are set to be zeros.

Target sequence -	 Y = (y1 = c(“<bos>”))T and encoder
attention EncoderAttention(X) are fed to decoder so as
to produce decode output Z.

Output -	 Z goes through linear component w = linear(Z)
and soft-max function component p = softmax(w) so
as to find out the maximum probability pi so that the ith
associated word in vocabulary is “i”. As a result, the
embedding numeric vector of the word “i” is added to
target sequence so that we obtain Y = (y1 = c(“<bos>”),
y2 = c(“i”))T.

Round 3:

Both target sequence -	 Y = (y1 = c(“<bos>”), y2 = c(“i”))
T and encoder attention EncoderAttention(X) are fed to
decoder so as to produce decode output Z.

Output -	 Z goes through linear component w = linear(Z)
and soft-max function component p = softmax(w) so
as to find out the maximum probability pi so that the
ith associated word in vocabulary is “am”. As a result,
the embedding numeric vector of the word “am” is
added to target sequence so that we obtain Y = (y1 =
c(“<bos>”), y2 = c(“i”) , y3 = c(“am”))T.

Similarly, rounds 4, 5, and 6 are processed by the same way
so as to obtain final target sequence Y = (y1 = c(“<bos>”),
y2 = c(“i”), y3 = c(“am”) , y4 = c(“a”), y5 = c(“student”)
, y6 = c(“<eos>”))T which is the English sentence “I am
a student” translated from the French sentence “Je suis
étudiant”. Note, the translation process is stopped when
the end-of-sentence word “<eos>” is met.

Open Access Journal of Computer Science and Engineering V1. I1. 202446

Tutorial on Deep Transformer

Main ideas of transformer were described but there
are two improvements such as positional encoding
and normalization. Firstly, positional encoding is that
sequences X and Y were added by their corresponding
position vectors:

Without loss of generality, let POS(X) = (pos(x1), pos(x2),…,
pos(xm))T be position vector whose each element is position
pos(xi) of token xi. It is necessary to survey pos(xi).

This implies how to calculate position vector POS(X) is
how to calculate position pos(xij) where i is position of the
ith token and j is position of the jth numeric value of such
token vector. We have:

Suppose two successive numeric values such as jth numeric
value and (j+1)th numeric value such that j = 2k and j+1
= 2k+1, we need to calculate two kinds of positions as
follows:

Fortunately, these positions are easily calculated by sine
function and cosine function as follows (Vaswani, et al.,
2017, p. 6):

Recall that dm is model dimension which is the length of
token vector xi. It is often set to be 512 in NLP. As a result,
we have:

Please pay attention that target sequence Y is added by
position vector POS(Y) by the same way too. There may
be a question that why sequences X and Y are added by
their position vectors before they are fed into encoder/
decoder when tokens in a sequence have their own orders
because a sequence is an ordered list of tokens indeed. The
answer depends on computational effectiveness as well as
flexibility. For example, when sequences are added by their

position vectors, transformer can be trained by incomplete
French source sequence “<bos> Je suis” and incomplete
English target sequence “a student <eos>” because there
is no requirement of token ordering. Moreover, sequences
can be split into many parts and these parts are trained
parallel. This improvement is necessary in case of training
huge corpus.

The second improvement is layer (network)
normalization:

LayerNorm(X + Sublayer(X))

LayerNorm(Y + Sublayer(Y))

Because residual mechanism is implemented by the sum X
+ Sublayer(X) or Y + Sublayer(Y), it is necessary to survey
the following normalization without loss of generality:

Layer Norm(x)

Where x = (x1, x2,…, xn)
T is layer of n neuron xi with note

that each neuron xi is represented by a number. Suppose x
as a sample conforms normal distribution, its sample mean
and variance are calculated as follows:

As a result, layer normalization is distribution
normalization:

In literature, layer normalization aims to improve
convergence speed in training.

It is not difficult to train transformer from corpus which
can be a huge set of pairs of source/target sequences.
Backpropagation algorithm associated with stochastic
gradient descent (SGD) is a simple and effective choice.
Feedforward sublayer represented by feedforward
network (FFN) is easily trained by backpropagation
algorithm associated SGD, besides attention sublayers can
be trained by backpropagation algorithm associated SGD
too. For instance, attention parameters for encoder such
as weight matrices Wi

Q, Wi
K, Wi

V, and WO can be learned
by backpropagation algorithm associated with SGD.
Attention parameters for decoder such as weight matrices
Wi

Q, Wi
K, Wi

V, WO, T, Ui
Q, Ui

K, Ui
V, and UO can be learned

by backpropagation algorithm associated SGD too. Note,
starting point for backpropagation algorithm to train
transformer is to make comparison of target sequence (for
example, the English target sentence “I am a student” given
the French source sentence “Je suis étudiant”) and evaluated

Open Access Journal of Computer Science and Engineering V1. I1. 2024 47

Tutorial on Deep Transformer

sequence (for example, the English evaluated sentence
“We are scholars” given the same French source sentence
“Je suis étudiant”) at decoder, which goes backward
encoder. Moreover, please pay attention that zero vectors
representing redundant tokens do not affect updating these
weight matrices when training transformer.

Pre-Trained Model
AI models cope with two problems of model learning:
1) it is impossible to preprocess or annotate (label) huge
data so as to make the huge data better for training, and 2)
huge data is often come with data stream rather than data
scratch. Note, the first problem is most important. Transfer
learning (Han, et al., 2021, pp. 226-227) can solve the two
problems by separating the training process by two stages:
1) pre-training stage aims to draw valuable knowledge
from data stream / data scratch, and 2) fine-tuning stage
later will take advantages of knowledge from pre-training
stage so as to apply the knowledge into solving task-
specific problem just by fewer samples or smaller data.
As its name hints, transfer learning draws knowledge from
pre-training stage and then transfers such knowledge to
fine-tuning stage for doing some specific task. Capturing
knowledge in pre-training stage is known as source task
and doing some specific task is known as target task (Han,
et al., 2021, p. 227). Source task and target task may be
essentially similar like GPT model and BERT model for
token generation mentioned later but these tasks can be
different or slightly different. The fine-tuning stage is
dependent on concrete application and so, pre-training
stage is focused in this section. The purpose of pre-
training stage is to build a large-scale pre-trained model
called PTM which must have ability to process huge data
or large-scale data. If large-scale data is come from data
stream called downstream data, PTM will need to reach
the strong point that is parallel computation. If large-scale
is too huge, PTM will need to reach the strong point that
is efficient computation. When efficient computation can
be reached by good implementation, parallel computation
requires an improvement of methodology. In order to
catch knowledge inside data without human interference
with restriction that such knowledge represented by label,
annotation, context, meaning, etc. is better than cluster and
group, self-supervised learning is often accepted as a good
methodology for PTM (Han, et al., 2021, pp. 227-229).
Essentially, self-supervised learning tries to draw pseudo-
supervised information from unannotated/unlabeled data
so that such pseudo-supervised information plays the
role of supervised information like annotation and label
that fine-tuning stage applies into supervised learning
tasks for solving specific problem with limited data. The
pseudo-supervised information is often relationships and
contexts inside data structure. Anyhow, self-supervised

learning is often associated with transfer learning because,
simply, annotating entirely huge data is impossible. Self-
supervised learning associated with pre-training stage
is called self-supervised pre-training. Although self-
supervised pre-training is preeminent, pre-training stage
can apply other learning approaches such as supervised
learning and unsupervised learning.

That the essentially strong point of transformer is self-
attention makes transformer appropriate to be a good
PTM when self-attention follows essentially ideology of
self-supervised learning because self-attention mechanism
tries to catch contextual meaning of every token inside
its sequence. Moreover, transformer supports parallel
computation based on its other aspect that transformer
does not concern token ordering in sequence. Anyhow,
transformer is suitable to PTM for transfer learning and so
this section tries to explain large-scaled pre-trained model
(PTM) via transformer as an example of PTM. Note, fine-
tuning stage of transfer learning will take advantages of
PTM for solving task-specific problem; in other words, fine-
tuning stage will fine-tune or retrain PTM with downstream
data, smaller data, or a smaller group of indications. When
fine-tuning stage is not focused in description, PTM is
known as transfer learning model which includes two
stages such as pre-training stage and fine-tuning stage. In
this case, source task and target task of transfer learning
have the same model architecture (model backbone) which
is the same PTM architecture. Large-scale PTM implies
its huge number of parameters as well as huge data from
which it is trained.

Generative Pre-trained Transformer (GPT), developed in
2018 with GPT-1 by OpenAI (www.openai.com) whose
product is ChatGPT launched in 2022, is a PTM that applies
only decoder of transformer into sequence generation. In
pre-training stage, GPT trains its decoder from huge data
over internet and available sources so as to predict next
word yt+1 from previous words y1, y2,…, yt by maximizing
likelihood P(yt+1 | Θ, y1, y2,…, yt) and taking advantages
of self-attention mechanism aforementioned (Han, et al.,
2021, p. 231). Maximization of likelihood P(yt+1 | Θ, y1,
y2,…, yt) belongs to autoregressive language model.

Where,

Open Access Journal of Computer Science and Engineering V1. I1. 202448

Tutorial on Deep Transformer

And,

Because GPT has only one decoder, sequence X is null in
GPT.

Likelihood P(yt+1 | Θ, y1, y2,…, yt) is simplified for easy
explanation. Exactly, given sequence Y = (y1, y2,…, yn+1)

T,
GPT aims to maximize log-likelihood L(Θ | Y) as follows
(Han, et al., 2021, p. 231):

Later on, GPT improves its pre-trained decoder in fine-
tuning stage by re-training the decoder with annotated
data, high-quality data, and domain-specific data so as
to improve pre-trained parameters. Moreover, GPT adds
extra presentation layers in fine-tuning stage (Han, et al.,
2021, p. 231). Following figure (Han, et al., 2021, p. 232)
depicts prediction process of GPT.

Figure 4.1. Prediction process of GPT

Bidirectional Encoder Representations from Transformers
(BERT), developed in 2018 by Google, is a PTM that applies
only encoder of transformer into sequence generation. In
pre-training stage, BERT trains its encoder from huge data
over internet and available sources. Given (t+1)-length
sequence (x1, x2,…, xt+1)

T, BERT applies masked language
model to randomize an unknown token at random position
denoted masked where the random index masked is
randomized in t+1 indices {1, 2,…, t+1} with note that the
randomization process can be repeated many times. Such
unknown token, which is called masked token denoted
ymasked, will be predicted given t-length sequence (x1, x2,…,
xt)

T without loss of generality. In order words, masked
words xmasked is predicted from other words x1, x2,…, xt by
maximizing likelihood P(xmasked | Θ, x1, x2,…, xt) and taking
advantages of self-attention mechanism aforementioned
(Han, et al., 2021, p. 232).

Where,

And,

Likelihood P(ymasked | Θ, x1, x2,…, xm) is simplified for easy
explanation, thereby it is necessary to explain more how
BERT defines and maximizes likelihood with support of
masked language model. Given sequence X = (x1, x2,…,
xm)T, let R = {r1, r2,…, rk} be the set of indices whose
respective tokens are initially masked, for instance, token

 will be initially masked if rj belongs to mask set R.
Let be the set of rj–1 tokens which are unmasked
later, for instance, the tokens , ,…, which
were initially masked before are now unmasked (known)
at current iteration. Note, the set R is called mask set or
mask pattern and does not include token . BERT
randomizes k masked indices so as to establish mask set R.
Let S be the set of indices whose tokens are always known,
which is the complement of mask set R with regard to all
indices so that union of R and S is {1, 2,…, m}. Thereby,
let S be the set of tokens whose indices are in S. In other
words, S contains tokens which are always known. BERT
aims to maximize log-likelihood L(Θ | X) as follows (Han,
et al., 2021, p. 232):

Later on, BERT improves its pre-trained encoder in fine-
tuning stage by re-training the encoder with annotated data,
high-quality data, and domain-specific data so as to improve
pre-trained parameters. By support of masked language
model (autoencoding language model) for masking tokens,
BERT can predict a token at any position in two directions
given a list of other tokens while GPT only predicts a
token at next position given previous tokens. The name
“BERT”, which is abbreviation of “Bidirectional Encoder
Representations from Transformers”, hints that BERT can
generate tokens/words in bidirectional way at any positions.
Therefore, GPT is appropriate to language generation and
BERT is appropriate to language understanding (Han, et

Multihead Attention (x,y) = Layer Norm (Masked
Multihead Attention(Y) + Multihead Attention(x,y))
Z=Decoder Attention (x,y) = Layer Norm (Multihead
Attention(x,y) + FFN(Masked Multihead(x,y)))

Multihead Attention (x) = Layer Norm (x+Multihead
Attention(Y))
Z=Encoder Attention (x) = Layer Norm (Multihead
Attention(x) + FFN(Masked Multihead(x)))

Open Access Journal of Computer Science and Engineering V1. I1. 2024 49

Tutorial on Deep Transformer

al., 2021, p. 231). BERT also adds extra presentation layers
in fine-tuning stage (Han, et al., 2021, p. 232). Following
figure depicts prediction process of BERT.

Figure 4.2. Prediction process of BERT

Recall that given a transfer model, capturing knowledge
in pre-training stage is known as source task and doing
some specific task is known as target task (Han, et al.,
2021, p. 227), thereby there is a question that how source
task transfers knowledge to target task or how PTM makes
connection between source task and knowledge task. The
answer is that there are two transferring approaches such as
feature transferring and parameter transferring (Han, et al.,
2021, p. 227). Feature transferring converts coarse data
like unlabeled data into fine data like labeled data so that
fine data considered as feature is fed to fine-tuning stage.
Parameter transferring transfers parameters learned at
pre-training stage to fine-tuning stage. If pre-training stage
and fine-tuning stage share the same model architecture
which is the same PTM architecture, parameter transferring
will always occur in PTM. Both GPT and BERT apply
parameter transferring because they will initialize or set up
their models such as GPT decoder and BERT encoder by
billions of parameters that were learned in pre-training stage
with the same model architecture (model backbone) such
as GPT decoder and BERT encoder before they perform
fining-tuning task in fine-tuning stage. Self-supervised
learning which trains unlabeled data is appropriate to
pre-training stage because unlabeled data is much more
popular than labeled data, thereby parameter transferring
is often associated with self-supervised learning. Because
transformer is suitable to self-supervised learning due to
its self-attention mechanism, parameter transferring is
suitable to PTMs like GPT and BERT. Moreover, if they
apply transformer into annotating or creating task-specific
data / fine data for improving their decoder and encoder
in fine-tuning stage, they will apply feature transferring
too. In general, within parameter transferring and same
architecture, PTM itself is backbone for both pre-training
stage and fine-tuning stage.

Conclusion
As the paper title “Attention is all you need” (Vaswani,
et al., 2017) hints, attention-awarded transformer is the
important framework for generative artificial intelligence
and statistical translation machine whose applications are
not only large but also highly potential. For instance, it
is possible for transformer to generate media content like

sound, image, video from texts, which is very potential
for cartoon industry and movie making applications
(film industry). The problem of difference in source data
and target data, which can be that, for example, source
sequence is text sentence and target sequence is raster
data like sound and image, can be solved effectively and
smoothly because of two aforementioned strong points
of transformer such as self-attention and not concerning
token ordering. Moreover, transformer’s methodology is
succinct with support of encoder-decoder mechanism and
deep neural network. Therefore, it is possible to infer that
applications of transformer can go beyond some recent
pre-trained models and/or pre-trained models based on
transformer can be improved more.

References
Alammar1.	 , J. (2018, June 27). The Illustrated
Transformer. (GitHub) Retrieved June 2024, from
Jay Alammar website: https://jalammar.github.io/
illustrated-transformer

Cho, K., Merrienboer, B. v., Gulcehre, C., Bahdanau, 2.	
D., Bougares, F., Schwenk, H., & Bengio, Y. (2014,
September 3). Learning Phrase Representations
using RNN Encoder-Decoder for Statistical Machine
Translation. arXiv preprint, 1-15. doi:10.48550/
arXiv.1406.1078

Graves, A. (2014, June 5). Generating Sequences 3.	
With Recurrent Neural Networks. arXiv preprint,
1-43. doi:10.48550/arXiv.1308.0850

Han, X., Zhang, Z., Ding, N., Gu, Y., Liu, X., Huo, 4.	
Y., . . . Zhu, J. (2021, August 26). Pre-trained models:
Past, present and future. AI Open, 2(2021), 225-250.
doi:10.1016/j.aiopen.2021.08.002

Hardle, W., & S5.	 imar, L. (2013). Applied Multivariate
Statistical Analysis. Berlin, Germany: Research Data
Center, School of Business and Economics, Humboldt
University.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, 6.	
J., Jones, L., Gomez, A. N., . . . Polosukhin, I.
(2017). Attention Is All You Need. In I. Guyon, U.
Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
& S. Vishwanathan (Ed.), Advances in Neural
Information Processing Systems (NIPS 2017). 30.
Long Beach: NeurIPS. Retrieved from https://arxiv.
org/abs/1706.03762

Voita, L. (2023, November 17). 7.	 Sequence to Sequence
(seq2seq) and Attention. (GitHub) Retrieved June
2024, from Elena (Lena) Voita website: https://lena-
voita.github.io/nlp_course/seq2seq_and_attention.
html

Open Access Journal of Computer Science and Engineering V1. I1. 202450

Tutorial on Deep Transformer

Wikipedia. (2005, April 7). 8.	 Recurrent neural network.
(Wikimedia Foundation) Retrieved from Wikipedia
website: https://en.wikipedia.org/wiki/Recurrent_
neural_network

Wikipedia. (2019, August 25). 9.	 Transformer (deep
learning architecture). (Wikimedia Foundation)
Retrieved from Wikipedia website: https://
en.wikipedia.org/wiki/Transformer_(deep_learning_
architecture)

