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Introduction
Artificial intelligence (AI) is recent trend in technological 
world, especially in computer science, in which artificial 
neural network (ANN, NN) is one of important subjects of 
AI. Essentially, ANN models or implements a complicated 
function y = f(x) where x = (x1, x2,…, xm)T and y = (y1, 
y2,…, yn)

T are vectors so that x and y are imitated by input 
layer and output layer of ANN, respectively with note 
that each layer is composed of units called neurons xi, yi. 
The complication degree of function y = f(x) is realized 
by hidden layers of ANN which are intermediated layers 
between input layer and output layer. We denote:

Where Θ denotes parameters of ANN which are often 
weights and biases. Because f(x | Θ) is essentially vector-
by-vector function whose input and output are vectors, it 
should have denoted as f(x | Θ) but it is still denoted as f(x | 
Θ) for convenience and moreover, input x and output y will 

be matrices if their elements xi and yi are vectors. If there 
are many enough hidden layers, ANN becomes a so-called 
deep neural network (DNN) such that DNN is cornerstone 
of the main subject of this report which is transformer 
because transformer, as its name implies, is the highly 
abstract and complicated version of function y = f(x). In 
other words, a transformer will make the transformation 
between complex and different objects if it is implemented 
by DNN or set of DNNs according to viewpoint of DNN. 
Although transformer can be applied into many areas, 
especially machine translation and computer vision, this 
report focuses on statistical machine translation (STM) 
because complex and different objects x and y in STM 
transformer are two sentences in two different languages 
where x is source language sentence and y is target 
language sentence. If ordering of elements xi / yi in vector 
x / y specifying sentence is concerned as ordering of words 
xi / yi in a sentence, transformer will relate to sequence 
generation. Therefore, transformer as well as STM are 
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inspired from sequence generation which, in turn, relates to 
recurrent neural network (RNN) as well as long short-term 
memory (LSTM) because sequence generation models are 
often implemented by RNN or LSTM. The most standard 
ANN/DNN called feedforward network (FFN) follows 
the one-way direction from input layer to hidden layers to 
output layer without reverse direction, which means that 
there is neither connections from output layer to hidden 
layers nor connections from hidden layers to input layers. 
In other words, there is no cycle in FFN, which cause the 
side-effect that it is difficult to model a sequence vector 
x = (x1, x2,…, xm)T like a sentence in natural language 
processing (NLP) because elements / words / terms / 
tokens xi in such sequence/sentence vector have the same 
structure and every connection xi → xi+1 of two successive 
words xi and xi+1 is, actually, a cycle. This is the reason 
that recurrent neural network (RNN) is better than FFN 
to generate sequence. Therefore, we research transformer 
after researching sequence generation which is concerned 
after RNN is concerned. Note, sequence and sentence are 
two exchangeable concepts in this research.

Suppose entire FNN is reduced into a state in RNN and 
RNN is ordered list of neurons called sequence of neurons 
and moreover, output of previous neuron xi–1 contributes to 
input of current neuron xi. Namely, for formal definition, 
given T time points t = 1, 2,…, T, then RNN is ordered 
sequence of T states and each state is modeled by triple (xt, 
ht, ot) called state (xt, ht, ot) where xt, ht, and ot represent 
input layer, hidden layer, and output layer, respectively. 
Without loss of generality, let xt, ht, and ot represent input 
neuron, hidden neuron, and output neuron, respectively 
when a layer is represented by one of its neurons. Please 
pay attention that xt, ht, and ot are represented vectors of the 
tth word in sentence x = (x1, x2,…, xm)T modeled by RNN in 
context of NLP because a word is modeled by a numeric 
vector in NLP. Therefore, the aforementioned sentence x 
= (x1, x2,…, xm)T is a matrix indeed but x is mentioned as 
a vector. Exactly, x is vector of vectors, which leads to 
the convention that its elements are denoted by bold letter 
such as xi or xt because such elements are variable vectors 
representing words. Note, a word in NLP can be mentioned 
as term or token.

Note, the subscript “T” denotes vector/matrix transposition 
operator. Whether the sentence / sequence is denoted 
as vector notation x or matrix notation X belongs to 
contextual explanations. Recall that transformer as well 
as STM are inspired from sequence generation which, in 
turn, is related to recurrent neural network (RNN) as well 
as long short-term memory (LSTM) because sequence 

generation models are often implemented by RNN or 
LSTM. Function y = f(x | Θ) implemented by DNNs such 
as RNN and LSTM is also called generator because it is 
sequence generation model indeed. Therefore, although 
transformer is different from RNN and LSTM, all of them 
are denoted by generator y = f(x | Θ) because they are 
sequence generation models indeed.

The tth element/word in sequence/sentence x = (x1, x2,…, 
xm)T is represented by the tth state (xt, ht, ot) of RNN where 
xt is the tth input word and ot is the tth output word. If RNN 
models x = (x1, x2,…, xm)T, then T = m and so, if RNN 
models y = (y1, y2,…, yn)

T, then T = n. By a convention, 
word and sentence are mentioned as token and sequence, 
respectively. Moreover, x is called source sequence and y is 
called target sequence or generated sequence. Mathematical 
equation to update RNN is specified as follows (Wikipedia, 
Recurrent neural network, 2005):

Where Wh, Uh, and Wo are weight matrices of current 
hidden neuron ht, previous hidden neuron ht–1, and current 
output neuron ot, respectively whereas bh and bo are bias 
vectors of ht and ot, respectively. Moreover, σh(.) and σo(.) 
are activation functions of ht and ot, respectively, which 
are vector-by-vector functions.

RNN copes with the problem of vanishing gradient when 
learning a long RNN of many states and so, long short-
term memory (LSTM) is proposed to restrict the problem 
of vanishing gradient. State in RNN becomes cell in LSTM 
and so, given T time points t = 1, 2,…, T, let the pair (ct, ht) 
denote LSTM cell at current time point t where ct represents 
real information stored in memory and ht represents clear-
cut information that propagates through next time points. 
A cell (ct, ht) has four gates such as forget gate ft, input gate 
it, output gate ot, and cell gate gt. At every time point t or 
every iteration t, cell (ct, ht) updates its information based 
on these gates as follows:

Note, W(.) and U(.) are weight matrices whereas b(.) are bias 
vectors, which are parameters. Because core information 
of cell (ct, ht) including ct and ht is calculated without 
any parameters, the problem of vanishing gradient can be 
alleviated when such gradient is calculated with regard to 
parameters such as weight matrices and bias vectors.
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In general, when a sequence is modeled by a RNN or a 
LSTM, it is possible to generate a new sequence after RNN or 
LSTM is trained by backpropagation algorithm associated 
with stochastic gradient descent (SGD) algorithm. In other 
words, RNN and LSTM are important generation models 
although transformer is the main subject in this report 
because STM is, essentially, a sequence generation model 
that generates a new sentence in target language from 
a sentence in source language when sentence in NLP is 
represented by sequence. Because RNN and LSTM have 
the same methodological ideology, RNN is mentioned 
rather than LSTM because RNN is simpler one but they 
can be applied by exchangeable manner. For instance, 
given simplest case that source sequence X = (x1, x2,…, 
xm)T and target sequence also called generated sequence Y 
= (y1, y2,…, yn)

T have the same length m = n.

Generation model f(x | Θ) is implemented by a RNN 
of n states (xt, ht, ot) so that ot = yt for all t from 1 to n. 
After RNN was trained from sample by backpropagation 
algorithm associated with SGD, given source sequence 
X = (x1, x2,…, xn)

T, target sequence Y = (y1, y2,…, yn)
T is 

generated easily by evaluating n states of RNN.

Such generation process with n-state RNN is depicted by 
following figure:

The next section will focus on sequence generation and 
attention which is a mechanism that improves generation 
process.

Sequence Generation and Attention
Recall that transformer as well as statistical translation 
machine (STM) are inspired from sequence generation 

Figure 1.1. RNN generation model

which, in turn, is related to recurrent neural network (RNN) 
as well as long short-term memory (LSTM) because 
sequence generation models are often implemented by 
RNN or LSTM. Function y = f(x | Θ) implemented by 
DNNs such as RNN and LSTM is also called generator 
because it is sequence generation model indeed. Because 
RNN and LSTM have the same methodological ideology, 
RNN is mentioned rather than LSTM. 

Note, Θ denotes parameters of ANN which are often weights 
and biases whereas sequence is denoted as vector notation x 
or matrix notation X belonging to contextual explanations. 
This section focuses on sequence generation models such 
as RNN and LSTM before mentioning advanced concepts 
of transformer because, anyhow, transformer is next 
evolutional step of sequence generation models, especially 
in STM and natural language processing (NLP).

Given simplest case aforementioned that source sequence X 
= (x1, x2,…, xm)T and target sequence also called generated 
sequence Y = (y1, y2,…, yn)

T have the same length m = n.

Generation model f(X | Θ) is implemented by a RNN 
of n states (xt, ht, ot) so that ot = yt for all t from 1 to n. 
After RNN was trained from sample by backpropagation 
algorithm associated with stochastic gradient descent 
(SGD) algorithm, given source sequence X = (x1, x2,…, xn)
T, target sequence Y = (y1, y2,…, yn)

T is generated easily by 
evaluating n states of RNN.

The simplest RNN generation needs to be extended if 
source sequence X is incomplete, for example, X has k token 
vectors x1, x2,…, xk where k < n. When X is incomplete, 
without loss of generality, given current output yt, it is 
necessary to predict the next output xt+1 (with suppose t > 
k). The prediction process, proposed by Graves (Graves, 
2014), is based on estimating the predictive probability 
P(xt+1 | yt) which is conditional probability of next input 
xt+1 given current output yt. As a result, RNN generation 
model is extended as follows (Graves, 2014, p. 4):

Following figure depicts the prediction model proposed by 
Graves (Graves, 2014, p. 3):
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The problem here is how to specify predictive probability 
P(xt+1 | yt). In the most general form, suppose joint 
probability P(xt+1, yt) is parameterized by multivariate 
normal distribution with mean vector μ and covariance 
matrix Σ.

It is easy to estimate μ and Σ to determine P(xt+1, yt) 
from sample by maximum likelihood estimation (MLE) 
method, for instance. Consequently, predictive probability 
P(xt+1 | yt) is determined based on joint probability P(xt+1, 
yt) as multivariate normal distribution with mean vector μ12 
and covariance matric Σ12 specified as follows (Hardle & 
Simar, 2013, p. 157):

Because predictive probability P(xt+1 | yt) gets highest at 
the mean μ12, it is possible to estimate xt+1 given yt by μ12.

The generation model above has only one RNN because 
source sequence X and target sequence Y have the 
same length. Some real applications, especially STM 
applications, require that lengths of X and Y are different, 
m ≠ n. This problem is called different-length problem.

Solution for different-length problem is to specify two 
RNNs: a RNN called encoder for X generation and the 
other one called decoder for Y generation. Intermediate 
vector a is proposed to connect encoder and decoder, which 
is called context vector in literature (Cho, et al., 2014, 
p. 2). The encoder-decoder mechanism is an important 
progressive step in STM as well as generative artificial 
intelligence (GenAI) because there is no requirement of 
mapping token-by-token between two sequences X and Y, 
which is much more important than solving the different-
length problem. On the other hand, sequence generation as 
well as its advanced development – transformer can also 
be classified into domain of GenAI.

According to Cho et al. (Cho, et al., 2014), context variable 
a, which is last output of encoder, becomes input of 
decoder. Following figure depicts encoder-decoder model 
proposed by Cho et al. (Cho, et al., 2014, p. 2) with note 
that context vector a has fixed length.

Figure 2.1. RNN prediction model

Figure 2.2. Encoder-decoder model with fixed-length context
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Note, both context and current token t are inputs of next 
token t+1. Moreover, there is an assignment yt+1 = ot. 
Therefore, each tth state of decoder is modified as follows:

Where Vh is weight matrix for context variable a. Moreover, 
it may be not required to calculate output for each tth state 
of encoder. It may be only necessary to calculate hidden 
value of encoder.

In STM, given source sequence X and t target tokens y1, 
y2,…, yt, it is necessary to predict the next target token yt+1. 
In other words, predictive probability P(yt+1 | Θ, X, y1, y2,…, 
yt) needs to be maximized so as to obtain yt+1. Predictive 
probability P(yt+1 | Θ, X, y1, y2,…, yt) is called likelihood 
at the tth state of decoder. Consequently, parameter Θ of 
encoder-decoder model is maximizer of such likelihood.

Note, parameter Θ represents weight matrices and biases 
of RNN. By support of RNN and context vector a with 
implication of Markov property, likelihood P(yt+1 | Θ, X, 
y1, y2,…, yt) can become simpler:

Likelihood P(yt+1 | Θ, X, y1, y2,…, yt), which represents 
statistical language model, is object of maximum likelihood 
estimation (MLE) method for training encoder-decoder 
model (Cho, et al., 2014, p. 2). For example, the likelihood 
can be approximated by standard normal distribution, 
which is equivalent to square error function, as follows:

Where f(X, y1, y2,…, yt | Θ) denotes encoder-decoder chain.

Therefore, training encoder-decoder model begins with 
MLE associated with backpropagation algorithm and SGD 
from decoder back to encoder.

Alternately, in STM with predefined word vocabulary, a 
simple but effective way to train encoder-decoder model is 
to replace likelihood P(yt+1 | Θ, X, y1, y2,…, yt) by a so-called 
linear component which is a feedforward network (FFN). 
Exactly, FNN maps the (t+1)th target token specified by 
token vector yt+1 to a weight vector w whose each element 
wi (0 ≤ wi ≤ 1) is weight of ith token (Alammar, 2018).

Length of weight vector w is the cardinality |Ω| where Ω 
is the vocabulary containing all tokens. After token weight 
vector w is determined, it is easily converted into output 
probability vector p = (p1, p2,…, p|Ω|)

T where each element 
pi is probability of the ith token in vocabulary given the 
(t+1)th target token (Alammar, 2018).

Following figure depicts linear component.

Figure 2.3. Linear component of encoder-decoder model
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It is interesting that likelihood P(yt+1 | Θ, X, y1, y2,…, yt) 
can be defined as output probability vector p = (p1, p2,…, 
p|Ω|)

T. If the ith token is issued, its probability pt is 1 and 
other probabilities are 0.

Consequently, training encoder-decoder model begins 
with training linear component FFN(yt+1) back to 
training decoder back to training encoder, which follows 
backpropagation algorithm associated stochastic gradient 
descent (SGD) method. Concretely, the following cross-
entropy L(p | Θ) is minimized so as to train FFN(yt+1).

Where Θ is parameter of FFN(yt+1) and the vector q = 
(q1, q2,…, q|Ω|)

T is binary vector from sample whose each 
element qi has binary values {0, 1} indicating whether the 
ith token/word exists. For example, give sequence/sentence 
(“I”, “am”, “a”, “student”)T, if there is only one token/word 
“I” in sample sentence, the binary vector will be q = (1, 0, 
0, 0)T. If three words “I”, “am”, and “student” are mutually 
existent, the binary vector will be q = (1, 1, 0, 1)T. When 
SGD is applied into minimizing the cross-entropy, partial 
gradient of L(p | Θ) with regard to wj is:

Where,

Proof,

Due to:

We obtain:

So that gradient of L(p | Θ) with regard to w is:

Therefore, parameter Θ is updated according to SGD 
associated with backpropagation algorithm:

Where γ (0 < γ ≤ 1) is learning rate. Please pay attention 

that ordering of source tokens is set from the end token 
back to the beginning token so that null tokens specified by 
zero vectors are always in the opening of sequence.

When encoder-decoder model is developed, context vector 
a becomes a so-called attention. The main difference 
between context vector and attention vector is that 
attention vector is calculated dynamically (customized) 
for each decoder state. Moreover, that context vector 
has fixed length restricts its prospect. Anyhow, attention 
mechanism fosters target sequence to pay attention to 
source sequence. In general, attention of a decoder state 
(token) is weighted sum of all encoder states (tokens) with 
regard to such decoder state. Suppose encoder RNN is 
denoted as follows:

For convenience, let s1, s2,…, sm denote m outputs of 
encoder such that:

Let score(si, ht) be score of encoder output si and decoder 
hidden ht where score(si, ht) measures how much the ith 
token of source sequence modeled by encoder is close to 
the tth token of target sequence modeled by decoder. As 
usual, score(si, ht) is defined as dot product of si and ht 
(Voita, 2023).

Where decoder hidden ht is:

Let weight(si, ht) be weight of encoder output si and decoder 
hidden ht over m states of encoder, which is calculated 
based on soft-max function (Voita, 2023):

As a result, let at be attention of source sequence X = (x1, 
x2,…, xn)

T with regard to the tth token of target sequence 
Y = (y1, y2,…, yn)

T, which is weighted sum of all encoder 
outputs with regard to such tth target token (Voita, 2023).

Obviously, at becomes one of inputs of the tth token of 
target sequence Y = (y1, y2,…, yn)

T such that:
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Where Vo is weight matrix of attention at. In general, 
decoder RNN associated with the attention mechanism 
called Luong attention (Voita, 2023) is specified as 
follows:

Where,

Following figure depicts encoder-decoder model with 
attention (Voita, 2023):

Figure 2.4. Encoder-decoder model with attention

Training encoder-decoder model with support attention is 
still based on likelihood maximization or linear component 
aforementioned. Attention mechanism mentioned here does 
not ever concern internal meaning of every token, which 
only fosters target sequence to pay attention at source 
sequence. The attention that concerns internal meanings 
of tokens is called self-attention which is an advancement 
of attention. In other words, self-attention fosters source 
sequence to pay attention to itself. Transformer mentioned 
in the next section will implement self-attention.

Transformer
Transformer, developed by Vaswani et al. (Vaswani, 
et al., 2017) in the famous paper “Attention Is All You 

Need”, has also attention mechanism and encoder-decoder 
mechanism like the aforementioned generation model 
that applies recurrent neural network (RNN) and short-
term memory (LSTM) but transformer does not require 
to process successively tokens of sequence in token-
by-token ordering, which improves translation speed. 
Moreover, another strong point of transformer is that it has 
self-attention which is the special attention that concerns 
internal meanings of its own tokens. Transformer supports 
both attention and self-attention, which fosters target 
sequence to pay attention to both source sequence and 
target sequence and also fosters source sequence to pay 
attention to itself. Besides, transformer does not apply RNN 
/ LSTM. Note that word and sentence in natural language 
processing (NLP) are mentioned as token and sequence, 
respectively by a convention, so that source sequence X 
is fed to encoder and target sequence Y is fed to decoder 
where X and Y are concerned exactly as matrices.

Each encoder as well as each decoder in transformer are 
composed of some identical layers. The number of layer 
which is developed by Vaswani et al. (Vaswani, et al., 2017, 
p. 3) is 6. Each encoder layer has two sublayers which are 
multi-head attention sublayer and feedforward sublayer 
whereas each decoder layer has three sublayers which are 
masked multi-head attention sublayer, multi-head attention 
sublayer, and feedforward sublayer. Every sublayer is 
followed by association of residual mechanism and layer 
normalization, denoted as Add & Norm = LayerNorm(X 
+ Sublayer(X)). The residual mechanism means that 
sublayer Sublayer(X) is added with its input as the sum 
X + Sublayer(X). Note, Sublayer(X) can be attention 
sublayer or feedforward sublayer. The layer normalization 
is to normalize such sum. Following figure summarizes 
transformer developed by Vaswani et al. (Vaswani, et al., 
2017, p. 3).

Feedforward sublayer also called feedforward network 
(FNN) aims to fine-tune attention by increasing degree of 
complication.

Encoder and its attention are described firstly when multi-
head attention is derived from basic concept of attention. 
Attention (self-attention) proposed by Vaswani et al. 
(Vaswani, et al., 2017) is based on three important matrices 
such as query matrix Q, key matrix K, and value matrix V. 
The number of rows of these matrices is m which is the 
number of tokens in sequence matrix X = (x1, x2,…, xm)
T but the number of columns of query matrix Q and key 
matrix K is dk whereas the number of columns of value 
matrix V is dv. The number m of token is set according to 
concrete applications, which is often the number of words 
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of the longest sentence. In literature (Vaswani, et al., 2017), 
dk and dv are called key dimension and value dimension, 
respectively. Dimensions of matrices Q, K, and V are m x 
dk, m x dk, and m x dv, respectively (Vaswani, et al., 2017), 
(Wikipedia, Transformer (deep learning architecture), 
2019).

 

Where,

 

Suppose every token vector xi in sequence matrix X = (x1, 
x2,…, xm)T has dm elements such that dm is called model 
dimension which is often 512 in NLP.

Query matrix Q, key matrix K, and value matrix V are 

determined by products of sequence matrix X and query 
weight matrix WQ, key weight matrix WK, value weight 
matrix WV.

Of course, dimensions of weight matrices WQ, WK, and 
WV are dm x dk, dm x dk, and dm x dv, respectively. All of 
them have dm rows. Matrices WQ and WK have dk columns 
whereas matrix WV have dv columns.

 

Attention is calculated based on scaled product of query 
matrix Q, key matrix K, and value matrix V in order to 
make effects on value matrix V specifying real sequence 
by probabilities and moreover, these probabilities are 

Figure 3.1. Architecture of transformer
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calculated by matching query matrix Q specifying query 
sequence and key matrix K specifying key sequence, which 
is similar to searching mechanism. These probabilities are 
also based on soft-max function, which implies weights 
too. Moreover, attention focuses on all tokens of sequence, 
which improves meaningful context of sentence in NLP. 
Given matrices Q, K, and V, attention of Q, K, and V is 
specified as follows:

Note, the subscript “T” denotes vector/matrix transposition 
operator. It is easy to recognize this attention is self-
attention of only one sequence X via Q, K, and V which are 
essentially calculated from X and weight matrices WQ, WK, 
and WV. Note, self-attention concerns internal meanings of 
its own tokens. Transformer here fosters source sequence 
to pay attention to itself. The reason of dividing product 
QKT by the scaling factor  is to improve convergence 
speed in training transformer. Before explaining how to 
calculate weight / probability matrix , it is 
necessary to skim the product QKT of query matrix Q and 
key matrix K which aims to match query sequence and key 
sequence.

The dot product qikj
T which indicates how much the query 

vector qi matches or attends mutually the key vector kj is 
specified as follows:

Probability matrix  is 
specified as follows:

The ith row of probability matrix  includes 

weights / probabilities that the ith token is associated with 
all tokens including itself with note that  is 
m x m matrix, specified by weight/probability vector pi. 
It is necessary to explain the ith row of probability matrix 

 which is the following row vector:

Each probability pij, which is weight indeed, is calculated 
by soft-max function as follows:

Where exp(.) is natural exponential function. Therefore, 
probability matrix  is totally determined:

Where,

Self-attention of Q, K, and V is totally determined as 
follows:

Where,

 
Note,  is the jth column vector of value matrix V. Of 
course, dimension of self-attention Attention(Q, K, V) is m 
x dv having m rows and dv columns. Attention Attention(Q, 
K, V) is also called scaled dot product attention because 
of dot product qikj

T and scaling factor . Each row 
ai = (ai1, ai2,…, )T of Attention(Q, K, V), which is a 
dv-length vector, is self-attention of the ith token which 
is contributed by all tokens via scaled dot products QKT. 
Therefore, the preeminence of self-attention is that self-
attention concerns all tokens in detail instead of concerning 
only sequence and the self-attention ai = (ai1, ai2,…, 
)T of the ith token is attended by all tokens. For example, 
given sentence “Jack is now asleep, because he is tired.”, 
the word “he” is strongly implied to the word “Jack” by 
self-attention of the word “he” although the word “he” is 
ambiguous. Following figure (Han, et al., 2021, p. 231) 
illustrates the self-attention of the word “he” in which 
each strength of implication of another word (accept itself 
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“he”) to the word “he” is indicated by strong degree of 
connection color.

Figure 3.2. Self-attention example

Vaswani et al. (Vaswani, et al., 2017) proposed an 
improvement of attention called multi-head attention 
which is concatenation of many attentions. The existence 
of many attentions aims to discover as much as possible 
different meanings under attentions and the concatenation 
mechanism aims to unify different attentions into one 
self-attention. Following equation specifies multi-head 
attention with note that the multi-head attention here is 
self-attention.

Where,

Of course, Wi
Q, Wi

K, and Wi
V are query weight matrix, key 

weight matrix, and value weight matrix for the ith head, 
respectively whereas WO is the entire weight matrix whose 
dimension is often set as hdv x dm so that multi-head attention 
MultiheadAttention(X) is m x dm matrix which is the same 
to dimension of input sequence matrix X = (x1, x2,…, xm)T. 
Note that the concatenation mechanism follows horizontal 
direction so that the concatenation concatenate(head1, 
head2,…, headh) is m x hdv matrix when each head headi 
= Attention(Qi, Ki, Vi) is m x dv matrix. There are h heads 
(attentions) in the equation above. In practice, h is set so 
that hdv = dm which is model dimension. Recall that dm is 
often 512 in NLP. For easy illustration, the concatenation 
of h attentions is represented as m x hdv as follows:

Obviously, weight matrix WO is hdv x dm matrix so that 
multi-head attention MultiheadAttention(X) is m x dm 
matrix, as follows:

After multi-head attention goes through residual mechanism 
and layer normalization of attention sublayer, it is fed to 
feedforward sublayer or feedforward network (FFN) to 
finish the processing of encoder. Let EncoderAttention(X) 
be output of encoder which is considered as attention:

 

If there is a stack of N encoders, the process above is 
repeated N times. In literature (Vaswani, et al., 2017), N is 
set to be 6. Without loss of generality, we can consider N = 
1 as simplest case for easy explanations.

Now it is essential to survey how decoder applies encoder 
attention EncoderAttention(X) into its encoding task. 
Essentially, decoder has two multi-head attentions such 
as masked multi-head attention and multi-head attention 
whereas encoder has only one multi-head attention. Their 
attentions are similar to encoder’s attention but there is a 
slight difference. Firstly, decoder input sequence Y = (y1, 
y2,…, yn)

T is fed to masked multi-head attention sublayer 
with note that Y is n x dm matrix with support that model 
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dimension dm, which is often set to be 512 in natural 
language processing (NLP), may not be changed with 
regard to decoder. Because masked multi-head attention 
is composed by concatenation of masked head attentions 
by the same way of encoder, we should concern masked 
head attention. Sequence Y should have n = m tokens 
like sequence X in practice. This is necessary because the 
length m = n is the largest number of possible tokens in any 
sequence. For shorter sentences in NLP, redundant tokens 
are represented by zeros. Moreover, most of parameters 
(weight matrices) of encoder and decoder are independent 
from m and n, especially in the case m = n.

There is a principle that a token yi in sequence Y does 
not know its successive tokens yi+1, yi+2,…, yn with note 
that these tokens are called unknown tokens for token yi, 
which causes that soft-max function needs to be added a 
mask matrix M whose unknown positions are removed by 
setting them to be negative infinites because evaluation of 
negative infinite by exponential function is zero. Masked 
attention is self-attention too.

Where masked matrix M is triangle matrix with negative 
infinites on upper part and zeros on lower part as follows:

Note,

Where WQ, WK, and WV are weight matrices with note that 
they are different from the ones of encoder. Dimensions of 
weight matrices WQ, WK, and WV are dm x dk, dm x dk, and dm 
x dv, respectively. Dimensions of matrices Q, K, and V are 
n x dk, n x dk, and n x dv, respectively whereas dimension of 
masked matrix M is n x dm. We have QKT is n x n matrix:

Recall that the purpose of masked matrix M is to remove 
the affections of current token from its after tokens such 
that:

Where,

Therefore, masked attention is determined as follows:

Where attention element aij is calculated by the 
aforementioned way:

Dimension of masked attention MaskedAttention(Y) 
is n x dv having n rows and dv columns. Following 
equation specifies masked multi-head attention which is 
concatenation of some masked attentions.

Where,

Please pay attention that weights matrices Wi
Q, Wi

K, Wi
V, 

and WO are different from the ones of encoder. Dimensions 
of Wi

Q, Wi
K, Wi

V, and WO are dm x dk, dm x dk, dm x dv, and 
hdv x dm so that dimension of masked multi-head attention 
MaskedMultiheadAttention(Y) is n x dm. Residual 
mechanism and layer normalization are applied into 
masked multi-head attention too:

Because mechanism of multi-head attention of decoder is 
relatively special, it is called complex multi-head attention 
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for convention. Because complex multi-head attention is 
composed by concatenation of some complex attentions 
by the same way of encoder, we should concern complex 
attention.

Query matrix Q and key matrix K of complex attention 
are products of encoder attention EncoderAttention(X) 
and query weight matrix UQ and key weight matrix UK, 
respectively.

Where T is transformation matrix whose dimension is n 
x m. If n = m, matrix T will be removed. Value matrix 
V of complex attention is product of masked multi-head 
attention and value weight matrix UV.

Dimensions of weight matrices UQ, UK, and UV are dm x dk, 
dm x dk, and dm x dv, respectively. Following figure depicts 
Attention(X, Y) in general view.

Figure 3.3. Decoder attention Attention(X, Y) in general view

Transformer here fosters target sequence to pay attention 
to itself and source sequence by masked self-attention 
and encoder attention. Of course, after complex attention 
is calculated, multi-head attention of decoder (complex 
multi-head attention) is totally determined.

Where,

Of course, Ui
Q, Ui

K, and Ui
V are query weight matrix, key 

weight matrix, and value weight matrix of the ith head, 

respectively whereas UO is entire weight matrix and 
T is transformation matrix. Because encoder attention 
EncoderAttention(X) is m x dm matrix, dimension of 
transformation matrix T is n x m. If n = m, matrix T will 
be removed. In practice, it is necessary to set n = m. 
Dimensions of Ui

Q, Ui
K, Ui

V, and UO are dm x dk, dm x dk, dm 
x dv, and hdv x dm so that dimension of multi-head attention 
MultiheadAttention(X, Y) is n x dm. Residual mechanism 
and layer normalization are applied into decoder multi-
head attention too:

Let Z be output of decoder which is decoder attention too, 
we obtain:

Where FFN denotes feedforward network or feedforward 
sublayer. If there is a stack of N decoders, the process 
above is repeated N times. In literature (Vaswani, et al., 
2017), N is set to be 6. Without loss of generality, we can 
consider N = 1 as simplest case for easy explanations. 
Note, dimension of Z is n x dm. Model dimension dm is 
often set to be 512 in NLP.

In context of statistical translation machine (STM), it is 
necessary to calculate probabilities of words (tokens) in 
vocabulary Ω. Because these probabilities are calculated 
based on soft-max function, it is first to map decoder 
output matrix Z into weight vector w = (w1, w2,…, w|Ω |)
T where every element wi of vector w is weight of the ith 
word in vocabulary Ω. The mapping is implemented by 
a feedforward network (FNN) called linear component 
in literature (Vaswani, et al., 2017, p. 3). In other words, 
input of linear component is sequence matrix Z whereas 
its output is weight vector w (Alammar, 2018). Please 
pay attention that the length of w is the number of words 
(tokens) in vocabulary Ω and so, w is also called token/
word weight vector.

In practice, Z is flattened into long vector because w is 
vector too so that FNN can be implemented. After token 
weight vector w is determined, it is easily converted into 
output probability vector p = (p1, p2,…, p|Ω|)

T where each 
element pi is probability of the ith word/token in vocabulary 
when sentence/sequence Z is raised (Alammar, 2018). 
If the tth word is issued, its probability pt is 1 and other 
probabilities are 0.

Consequently, the next token which is predicted in STM 
for example is the one whose probability is highest, which 

Multihead Attention (x,y) =Layer Norm (Masked 
Multihead Attention(Y) + Masked Multihead(x,y))

Z=Decoder Attention (x,y) =Layer Norm (Masked 
Multihead Attention(Y) + FFN(Masked Multihead(x,y))
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means that the largest element in p need to be found for STM 
translation after linear component w and output probability 
p are evaluated given Z which in turn determined based on 
source sequence X and target sequence Y via mechanism 
encoder/decoder and attention.

It is not difficult to learn linear component FFN(Z) by 
backpropagation algorithm associated stochastic gradient 
descent (SGD) method. Concretely, the following cross-
entropy L(p | Θ) is minimized so as to train FFN(Z).

Where Θ is parameter of FFN(Z) and the vector q = (q1, 
q2,…, q|Ω|)

T is binary vector from sample whose each 
element qi has binary values {0, 1} indicating whether the 
ith token/word exists. For example, give sequence/sentence 
(“I”, “am”, “a”, “student”)T, if there is only one token/word 
“I” in sample sentence, the binary vector will be q = (1, 0, 
0, 0)T. If three words “I”, “am”, and “student” are mutually 
existent, the binary vector will be q = (1, 1, 0, 1)T. When 
SGD is applied into minimizing the cross-entropy, partial 
gradient of L(p | Θ) with regard to wj is:

Where,

Proof,

Due to:

We obtain:

So that gradient of L(p | Θ) with regard to w is:

Therefore, parameter Θ is updated according to SGD 
associated with backpropagation algorithm:

Where γ (0 < γ ≤ 1) is learning rate.

For STM example, given French source sentence “Je suis 
étudiant” (Alammar, 2018) is translated into English target 
sentence “I am a student” (Alammar, 2018) by transformer 
which is trained with corpus before (transformer was 

determined), which goes through following rounds:

Round 1:

French source s-	 entence “Je suis étudiant” coded 
by sentence/sequence matrix X = (x1 = c(“<bos>”), 
x2 = c(“je”), x3 = c(“suis”), x4 = c(“étudiant”), x5 = 
c(“<eos>”))T where c(.) is embedding numeric vector of 
given word with note that words “<bos>” and “<eos>” 
are special predefined words indicating the beginning 
of sentence and the end of sentence, respectively. As 
a convention, c(.) is called word/token vector whose 
dimension can be dm=512. If predefined sentence 
length is longer, redundant word vectors are set to 
be zeros, for example, let x6 = 0, x7 = 0,…, x100 = 0 
given the maximum number words in sentence is 100. 
These zero vectors do not affect decoder evaluation 
and training parameters.

Source sequence -	 X is fed to encoder so as to produce 
encoder attention EncoderAttention(X).

Round 2:

English target sentence is coded by sequence/matrix -	 Y 
= (y1 = c(“<bos>”))T. If predefined sentence length is 
longer, redundant word vectors are set to be zeros.

Target sequence -	 Y = (y1 = c(“<bos>”))T and encoder 
attention EncoderAttention(X) are fed to decoder so as 
to produce decode output Z.

Output -	 Z goes through linear component w = linear(Z) 
and soft-max function component p = softmax(w) so 
as to find out the maximum probability pi so that the ith 
associated word in vocabulary is “i”. As a result, the 
embedding numeric vector of the word “i” is added to 
target sequence so that we obtain Y = (y1 = c(“<bos>”), 
y2 = c(“i”))T.

Round 3:

Both target sequence -	 Y = (y1 = c(“<bos>”), y2 = c(“i”))
T and encoder attention EncoderAttention(X) are fed to 
decoder so as to produce decode output Z.

Output -	 Z goes through linear component w = linear(Z) 
and soft-max function component p = softmax(w) so 
as to find out the maximum probability pi so that the 
ith associated word in vocabulary is “am”. As a result, 
the embedding numeric vector of the word “am” is 
added to target sequence so that we obtain Y = (y1 = 
c(“<bos>”), y2 = c(“i”) , y3 = c(“am”))T.

Similarly, rounds 4, 5, and 6 are processed by the same way 
so as to obtain final target sequence Y = (y1 = c(“<bos>”), 
y2 = c(“i”), y3 = c(“am”) , y4 = c(“a”), y5 = c(“student”) 
, y6 = c(“<eos>”))T which is the English sentence “I am 
a student” translated from the French sentence “Je suis 
étudiant”. Note, the translation process is stopped when 
the end-of-sentence word “<eos>” is met.
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Main ideas of transformer were described but there 
are two improvements such as positional encoding 
and normalization. Firstly, positional encoding is that 
sequences X and Y were added by their corresponding 
position vectors:

Without loss of generality, let POS(X) = (pos(x1), pos(x2),…, 
pos(xm))T be position vector whose each element is position 
pos(xi) of token xi. It is necessary to survey pos(xi).

This implies how to calculate position vector POS(X) is 
how to calculate position pos(xij) where i is position of the 
ith token and j is position of the jth numeric value of such 
token vector. We have:

Suppose two successive numeric values such as jth numeric 
value and (j+1)th numeric value such that j = 2k and j+1 
= 2k+1, we need to calculate two kinds of positions as 
follows:

Fortunately, these positions are easily calculated by sine 
function and cosine function as follows (Vaswani, et al., 
2017, p. 6):

Recall that dm is model dimension which is the length of 
token vector xi. It is often set to be 512 in NLP. As a result, 
we have:

 
 

 

Please pay attention that target sequence Y is added by 
position vector POS(Y) by the same way too. There may 
be a question that why sequences X and Y are added by 
their position vectors before they are fed into encoder/
decoder when tokens in a sequence have their own orders 
because a sequence is an ordered list of tokens indeed. The 
answer depends on computational effectiveness as well as 
flexibility. For example, when sequences are added by their 

position vectors, transformer can be trained by incomplete 
French source sequence “<bos> Je suis” and incomplete 
English target sequence “a student <eos>” because there 
is no requirement of token ordering. Moreover, sequences 
can be split into many parts and these parts are trained 
parallel. This improvement is necessary in case of training 
huge corpus.

The second improvement is layer (network) 
normalization:

LayerNorm(X + Sublayer(X))

LayerNorm(Y + Sublayer(Y))

Because residual mechanism is implemented by the sum X 
+ Sublayer(X) or Y + Sublayer(Y), it is necessary to survey 
the following normalization without loss of generality:

Layer Norm(x)

Where x = (x1, x2,…, xn)
T is layer of n neuron xi with note 

that each neuron xi is represented by a number. Suppose x 
as a sample conforms normal distribution, its sample mean 
and variance are calculated as follows:

 

As a result, layer normalization is distribution 
normalization:

In literature, layer normalization aims to improve 
convergence speed in training.

It is not difficult to train transformer from corpus which 
can be a huge set of pairs of source/target sequences. 
Backpropagation algorithm associated with stochastic 
gradient descent (SGD) is a simple and effective choice. 
Feedforward sublayer represented by feedforward 
network (FFN) is easily trained by backpropagation 
algorithm associated SGD, besides attention sublayers can 
be trained by backpropagation algorithm associated SGD 
too. For instance, attention parameters for encoder such 
as weight matrices Wi

Q, Wi
K, Wi

V, and WO can be learned 
by backpropagation algorithm associated with SGD. 
Attention parameters for decoder such as weight matrices 
Wi

Q, Wi
K, Wi

V, WO, T, Ui
Q, Ui

K, Ui
V, and UO can be learned 

by backpropagation algorithm associated SGD too. Note, 
starting point for backpropagation algorithm to train 
transformer is to make comparison of target sequence (for 
example, the English target sentence “I am a student” given 
the French source sentence “Je suis étudiant”) and evaluated 
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sequence (for example, the English evaluated sentence 
“We are scholars” given the same French source sentence 
“Je suis étudiant”) at decoder, which goes backward 
encoder. Moreover, please pay attention that zero vectors 
representing redundant tokens do not affect updating these 
weight matrices when training transformer.

Pre-Trained Model
AI models cope with two problems of model learning: 
1) it is impossible to preprocess or annotate (label) huge 
data so as to make the huge data better for training, and 2) 
huge data is often come with data stream rather than data 
scratch. Note, the first problem is most important. Transfer 
learning (Han, et al., 2021, pp. 226-227) can solve the two 
problems by separating the training process by two stages: 
1) pre-training stage aims to draw valuable knowledge 
from data stream / data scratch, and 2) fine-tuning stage 
later will take advantages of knowledge from pre-training 
stage so as to apply the knowledge into solving task-
specific problem just by fewer samples or smaller data. 
As its name hints, transfer learning draws knowledge from 
pre-training stage and then transfers such knowledge to 
fine-tuning stage for doing some specific task. Capturing 
knowledge in pre-training stage is known as source task 
and doing some specific task is known as target task (Han, 
et al., 2021, p. 227). Source task and target task may be 
essentially similar like GPT model and BERT model for 
token generation mentioned later but these tasks can be 
different or slightly different. The fine-tuning stage is 
dependent on concrete application and so, pre-training 
stage is focused in this section. The purpose of pre-
training stage is to build a large-scale pre-trained model 
called PTM which must have ability to process huge data 
or large-scale data. If large-scale data is come from data 
stream called downstream data, PTM will need to reach 
the strong point that is parallel computation. If large-scale 
is too huge, PTM will need to reach the strong point that 
is efficient computation. When efficient computation can 
be reached by good implementation, parallel computation 
requires an improvement of methodology. In order to 
catch knowledge inside data without human interference 
with restriction that such knowledge represented by label, 
annotation, context, meaning, etc. is better than cluster and 
group, self-supervised learning is often accepted as a good 
methodology for PTM (Han, et al., 2021, pp. 227-229). 
Essentially, self-supervised learning tries to draw pseudo-
supervised information from unannotated/unlabeled data 
so that such pseudo-supervised information plays the 
role of supervised information like annotation and label 
that fine-tuning stage applies into supervised learning 
tasks for solving specific problem with limited data. The 
pseudo-supervised information is often relationships and 
contexts inside data structure. Anyhow, self-supervised 

learning is often associated with transfer learning because, 
simply, annotating entirely huge data is impossible. Self-
supervised learning associated with pre-training stage 
is called self-supervised pre-training. Although self-
supervised pre-training is preeminent, pre-training stage 
can apply other learning approaches such as supervised 
learning and unsupervised learning.

That the essentially strong point of transformer is self-
attention makes transformer appropriate to be a good 
PTM when self-attention follows essentially ideology of 
self-supervised learning because self-attention mechanism 
tries to catch contextual meaning of every token inside 
its sequence. Moreover, transformer supports parallel 
computation based on its other aspect that transformer 
does not concern token ordering in sequence. Anyhow, 
transformer is suitable to PTM for transfer learning and so 
this section tries to explain large-scaled pre-trained model 
(PTM) via transformer as an example of PTM. Note, fine-
tuning stage of transfer learning will take advantages of 
PTM for solving task-specific problem; in other words, fine-
tuning stage will fine-tune or retrain PTM with downstream 
data, smaller data, or a smaller group of indications. When 
fine-tuning stage is not focused in description, PTM is 
known as transfer learning model which includes two 
stages such as pre-training stage and fine-tuning stage. In 
this case, source task and target task of transfer learning 
have the same model architecture (model backbone) which 
is the same PTM architecture. Large-scale PTM implies 
its huge number of parameters as well as huge data from 
which it is trained.

Generative Pre-trained Transformer (GPT), developed in 
2018 with GPT-1 by OpenAI (www.openai.com) whose 
product is ChatGPT launched in 2022, is a PTM that applies 
only decoder of transformer into sequence generation. In 
pre-training stage, GPT trains its decoder from huge data 
over internet and available sources so as to predict next 
word yt+1 from previous words y1, y2,…, yt by maximizing 
likelihood P(yt+1 | Θ, y1, y2,…, yt) and taking advantages 
of self-attention mechanism aforementioned (Han, et al., 
2021, p. 231). Maximization of likelihood P(yt+1 | Θ, y1, 
y2,…, yt) belongs to autoregressive language model.

Where,
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And,

Because GPT has only one decoder, sequence X is null in 
GPT.

 
 

Likelihood P(yt+1 | Θ, y1, y2,…, yt) is simplified for easy 
explanation. Exactly, given sequence Y = (y1, y2,…, yn+1)

T, 
GPT aims to maximize log-likelihood L(Θ | Y) as follows 
(Han, et al., 2021, p. 231):

Later on, GPT improves its pre-trained decoder in fine-
tuning stage by re-training the decoder with annotated 
data, high-quality data, and domain-specific data so as 
to improve pre-trained parameters. Moreover, GPT adds 
extra presentation layers in fine-tuning stage (Han, et al., 
2021, p. 231). Following figure (Han, et al., 2021, p. 232) 
depicts prediction process of GPT.

Figure 4.1. Prediction process of GPT

Bidirectional Encoder Representations from Transformers 
(BERT), developed in 2018 by Google, is a PTM that applies 
only encoder of transformer into sequence generation. In 
pre-training stage, BERT trains its encoder from huge data 
over internet and available sources. Given (t+1)-length 
sequence (x1, x2,…, xt+1)

T, BERT applies masked language 
model to randomize an unknown token at random position 
denoted masked where the random index masked is 
randomized in t+1 indices {1, 2,…, t+1} with note that the 
randomization process can be repeated many times. Such 
unknown token, which is called masked token denoted 
ymasked, will be predicted given t-length sequence (x1, x2,…, 
xt)

T without loss of generality. In order words, masked 
words xmasked is predicted from other words x1, x2,…, xt by 
maximizing likelihood P(xmasked | Θ, x1, x2,…, xt) and taking 
advantages of self-attention mechanism aforementioned 
(Han, et al., 2021, p. 232).

Where,

And,

Likelihood P(ymasked | Θ, x1, x2,…, xm) is simplified for easy 
explanation, thereby it is necessary to explain more how 
BERT defines and maximizes likelihood with support of 
masked language model. Given sequence X = (x1, x2,…, 
xm)T, let R = {r1, r2,…, rk} be the set of indices whose 
respective tokens are initially masked, for instance, token 

 will be initially masked if rj belongs to mask set R. 
Let  be the set of rj–1 tokens which are unmasked 
later, for instance, the tokens , ,…,  which 
were initially masked before are now unmasked (known) 
at current iteration. Note, the set R is called mask set or 
mask pattern and  does not include token . BERT 
randomizes k masked indices so as to establish mask set R. 
Let S be the set of indices whose tokens are always known, 
which is the complement of mask set R with regard to all 
indices so that union of R and S is {1, 2,…, m}. Thereby, 
let S be the set of tokens whose indices are in S. In other 
words, S contains tokens which are always known. BERT 
aims to maximize log-likelihood L(Θ | X) as follows (Han, 
et al., 2021, p. 232):

Later on, BERT improves its pre-trained encoder in fine-
tuning stage by re-training the encoder with annotated data, 
high-quality data, and domain-specific data so as to improve 
pre-trained parameters. By support of masked language 
model (autoencoding language model) for masking tokens, 
BERT can predict a token at any position in two directions 
given a list of other tokens while GPT only predicts a 
token at next position given previous tokens. The name 
“BERT”, which is abbreviation of “Bidirectional Encoder 
Representations from Transformers”, hints that BERT can 
generate tokens/words in bidirectional way at any positions. 
Therefore, GPT is appropriate to language generation and 
BERT is appropriate to language understanding (Han, et 

Multihead Attention (x,y) = Layer Norm (Masked 
Multihead Attention(Y) + Multihead Attention(x,y))
Z=Decoder Attention (x,y) = Layer Norm (Multihead 
Attention(x,y) + FFN(Masked Multihead(x,y)))

Multihead Attention (x) = Layer Norm (x+Multihead 
Attention(Y) )
Z=Encoder Attention (x) = Layer Norm (Multihead 
Attention(x) + FFN(Masked Multihead(x)))
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al., 2021, p. 231). BERT also adds extra presentation layers 
in fine-tuning stage (Han, et al., 2021, p. 232). Following 
figure depicts prediction process of BERT.

Figure 4.2. Prediction process of BERT

Recall that given a transfer model, capturing knowledge 
in pre-training stage is known as source task and doing 
some specific task is known as target task (Han, et al., 
2021, p. 227), thereby there is a question that how source 
task transfers knowledge to target task or how PTM makes 
connection between source task and knowledge task. The 
answer is that there are two transferring approaches such as 
feature transferring and parameter transferring (Han, et al., 
2021, p. 227). Feature transferring converts coarse data 
like unlabeled data into fine data like labeled data so that 
fine data considered as feature is fed to fine-tuning stage. 
Parameter transferring transfers parameters learned at 
pre-training stage to fine-tuning stage. If pre-training stage 
and fine-tuning stage share the same model architecture 
which is the same PTM architecture, parameter transferring 
will always occur in PTM. Both GPT and BERT apply 
parameter transferring because they will initialize or set up 
their models such as GPT decoder and BERT encoder by 
billions of parameters that were learned in pre-training stage 
with the same model architecture (model backbone) such 
as GPT decoder and BERT encoder before they perform 
fining-tuning task in fine-tuning stage. Self-supervised 
learning which trains unlabeled data is appropriate to 
pre-training stage because unlabeled data is much more 
popular than labeled data, thereby parameter transferring 
is often associated with self-supervised learning. Because 
transformer is suitable to self-supervised learning due to 
its self-attention mechanism, parameter transferring is 
suitable to PTMs like GPT and BERT. Moreover, if they 
apply transformer into annotating or creating task-specific 
data / fine data for improving their decoder and encoder 
in fine-tuning stage, they will apply feature transferring 
too. In general, within parameter transferring and same 
architecture, PTM itself is backbone for both pre-training 
stage and fine-tuning stage.

Conclusion
As the paper title “Attention is all you need” (Vaswani, 
et al., 2017) hints, attention-awarded transformer is the 
important framework for generative artificial intelligence 
and statistical translation machine whose applications are 
not only large but also highly potential. For instance, it 
is possible for transformer to generate media content like 

sound, image, video from texts, which is very potential 
for cartoon industry and movie making applications 
(film industry). The problem of difference in source data 
and target data, which can be that, for example, source 
sequence is text sentence and target sequence is raster 
data like sound and image, can be solved effectively and 
smoothly because of two aforementioned strong points 
of transformer such as self-attention and not concerning 
token ordering. Moreover, transformer’s methodology is 
succinct with support of encoder-decoder mechanism and 
deep neural network. Therefore, it is possible to infer that 
applications of transformer can go beyond some recent 
pre-trained models and/or pre-trained models based on 
transformer can be improved more.
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