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Introduction
The idea of paper is connected with different curve 
modeling for the same set of curve points (nodes). The 
problem of multidimensional data modeling appears in 
many branches of science and industry. Image retrieval, data 
reconstruction, object identification or pattern recognition 
are still the open problems in artificial intelligence and 
computer vision. The paper is dealing with these questions 
via modeling of high-dimensional data for applications 
of image segmentation in image retrieval and recognition 
tasks. Handwriting based author recognition offers a huge 
number of significant implementations which make it an 
important research area in pattern recognition. There are 
so many possibilities and applications of the recognition 
algorithms that implemented methods have to be concerned 
on a single problem: retrieval, identification, verification 
or recognition. This paper is concerned with two parts: 
image retrieval and recognition tasks. Image retrieval is 
based on  modeling of unknown features via combination 
of N-dimensional functions for each feature. In the case 
of biometric writer recognition, each person is represented 
by the set of modeled letters or symbols. The sketch of 

proposed method consists of three steps: first handwritten 
letter or symbol must be modeled by a vector of features 
(N-dimensional data), then compared with unknown letter 
and finally there is a decision of identification. Author 
recognition of handwriting and signature is based on the 
choice of feature vectors and modeling functions. So high-
dimensional data interpolation in handwriting identification 
[20] is not only a pure mathematical problem but important 
task in pattern recognition and artificial intelligence such 
as: biometric recognition, personalized handwriting 
recognition [3-5], automatic forensic document examination 
[6,7], classification of ancient manuscripts [8]. Also writer 
recognition [9] in monolingual handwritten texts is an 
extensive area of study and the methods independent from 
the language are well-seen [10-13]. Proposed method 
represents language-independent and text-independent 
approach because it identifies the author via a set of letters 
or symbols from the sample.

Writer recognition methods in the recent years are going to 
various directions [14-18]: writer recognition using multi-
script handwritten texts, introduction of new features, 
combining different types of features, studying the sensitivity 
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of character size on writer identification, investigating 
writer identification in multi-script environments, impact 
of ruling lines on writer identification, model perturbed 
handwriting, methods based on run-length features, the 
edge-direction and edge-hinge features, a combination 
of codebook and visual features extracted from chain 
code and polygonized representation of contours, the 
autoregressive coefficients, codebook and efficient code 
extraction methods, texture analysis with Gabor filters and 
extracting features, using Hidden Markov Model [19] or 
Gaussian Mixture Model [1]. So hybrid soft computing is 
essential: no method is dealing with writer identification 
via N-dimensional data modeling or interpolation and 
multidimensional points comparing as it is presented 
in this paper. The paper wants to approach a problem of 
curve interpolation and shape modeling by characteristic 
points in handwriting identification [2]. Proposed method 
relies on nodes combination and functional modeling of 
curve points situated between the basic set of key points. 
The functions that are used in calculations represent whole 
family of elementary functions with inverse functions: 
polynomials, trigonometric, cyclometric, logarithmic, 
exponential and power function. Nowadays methods 
apply mainly polynomial functions, for example Bernstein 
polynomials in Bezier curves, splines [25] and NURBS. 
But Bezier curves don’t represent the interpolation 
method and cannot be used for example in signature and 
handwriting modeling with characteristic points (nodes). 
Numerical methods [21-23] for data interpolation are based 
on polynomial or trigonometric functions, for example 
Lagrange, Newton, Aitken and Hermite methods. These 
methods have some weak sides and are not sufficient for 
curve interpolation in the situations when the curve cannot 
be build by polynomials or trigonometric functions [24].

This paper presents novel method of high-dimensional 
interpolation in hybrid soft computing and takes up 
method of multidimensional data modeling. The method  
requires information about data (image, object, curve) as 
the set of N-dimensional feature vectors. So this paper 
wants to answer the question: how to retrieve the image 
using N-dimensional feature vectors and to recognize a 
handwritten letter or symbol by a set of high-dimensional 
nodes via hybrid soft computing?

Multidimensional Modeling of Feature 
Vectors
Proposed method is computing (interpolating) unknown 
(unclear, noised or destroyed) values of features 
between two successive nodes (N-dimensional vectors 
of features) using hybridization of mathematical analysis 
and numerical methods, Calculated values (unknown or 
noised features such as coordinates, colors, textures or 

any coefficients of pixels, voxels and doxels or image 
parameters) are interpolated and parameterized for real 
number αi ∈ [0;1] (i = 1,2,…N-1) between two successive 
values of feature. This method uses the combinations of 
nodes (N-dimensional feature vectors) p1=(x1,y1,…,z1), 
p2=(x2,y2,…,z2),…, pn=(xn,yn,…zn) as h(p1,p2,…,pm) and 
m=1,2,…n to interpolate unknown value of feature (for 
example y) for the rest of coordinates:

c1 = α1.xk+ (1-α1)⋅xk+1,…… cN-1 = αN-1⋅zk+ (1-αN-1)⋅zk+1 ,        
k = 1,2,…n-1,

c = ( c1,…, cN-1),   α = (α1,…, αN-1),   γi = Fi(αi) ∈ [0;1],         
i = 1,2,…N-1

),...,,()1()1()( 211 mkk ppphyycy ⋅−+−+⋅= + gggg          (1)

αi ∈ [0;1],  γ = F(α) = F(α1,…, αN-1) ∈ [0;1].

Then N-1 features c1,…, cN-1 are parameterized by α1,…, 
αN-1 between two nodes and the last feature (for example 
y) is interpolated via formula (1). Of course there can be 
calculated x(c) or z(c) using (1). Two examples of h (when 
N = 2) computed for MHR method [26] with good features 
because of orthogonal rows and columns at Hurwitz-Radon 
family of matrices:
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The simplest nodes combination is

   0),...,,( 21 =mppph                                                         (3)

and then there is a formula of interpolation:

1)1()( +−+⋅= ii yycy gg .

Formula (1) gives the infinite number of calculations for 
unknown feature determined by choice of F and h. Nodes 
combination is the individual feature of each modeled 
data. Coefficient γ=F(α) and nodes combination h are key 
factors in data interpolation and object modeling. 

N-Dimensional Functions in Modeling

Unknown values of features, settled between the nodes, 
are computed using (1). Key question is dealing with 
coefficient γ. The simplest way of calculation means h = 
0 and γi = αi. Then proposed method represents a linear 
interpolation. Each interpolation requires specific values 
of αi and γ in (1) depends on parameters αi ∈ [0;1]: 

γ = F(α),  F:[0;1]N-1→[0;1],  F(0,…,0) = 0,  F(1,…,1) = 1

and F is strictly monotonic for each αi separately. Coefficient 
γi are calculated using appropriate function and choice 
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of function is connected with initial requirements and 
data specifications. Different values of coefficients γi are 
connected with applied functions Fi(αi). These functions 
γi = Fi(αi) represent the examples of modeling functions 
for αi ∈ [0;1] and real number s > 0, i = 1,2,…N-1. Each 
function is applied for different modelling: 

γi=αi
s, γi=sin(αi

s·π/2), γi=sins(αi·π/2), γi=1-cos(αi
s·π/2), γi=1-

coss(αi·π/2), γi=tan(αi
s·π/4), γi=tans(αi·π/4), γi=log2(αi

s+1), 

γi=log2
s(αi+1), γi=(2α–1)s, γi=2/π·arcsin(αi

s), γi=(2/
π·arcsinαi)

s, γi=1-2/π·arccos(αi
s),    γi=1-(2/π·arccosαi)

s, 
γi=4/π·arctan(αi

s),   γi=(4/π·arctanαi)
s,    γi=ctg(π/2–αi

s·π/4),    
γi=ctgs(π/2-αi·π/4), γi=2-4/π·arcctg(αi

s), γi=(2-4/π·arcctgαi)
s or any strictly monotonic function between points (0;0) 
and (1;1). For example interpolations of function y=2x for 
N = 2, h = 0 and γ = αs with s = 0.8 (Fig.1) is much better 
than linear interpolation.

Figure 1. Two-dimensional modeling of function y=2x with seven nodes and h=0, γ=α0.8.

Functions γi are strictly monotonic for each variable αi ∈ 

[0;1] as γ = F(α) is N-dimensional modeling function, for 
example:

   

and every  monotonic combination of γi such as

γ = F(α),  F:[0;1]N-1→[0;1],  F(0,…,0) = 0,  F(1,…,1) = 1.

For example when N = 3 there is a bilinear interpolation:

γ1 = α1 , γ2 = α2  , γ = ½(α1 + α2)                         (4)

or a bi-quadratic interpolation:

 γ1 = α1
2 , γ2 = α2

2  , γ = ½(α1
2
 + α2

2)                    (5)

or a bi-cubic interpolation:

γ1 = α1
3 , γ2 = α2

3  , γ = ½(α1
3
 + α2

3)                     (6)

or others modeling functions γ. Choice of functions γi and 
value s depends on the specifications of feature vectors 
and individual requirements. What is very important: two 
data sets (for example a handwritten letter or signature) 
may have the same set of nodes (feature vectors: pixel 
coordinates, pressure, speed, angles) but different h or γ 
results in different interpolations (Fig.2-4). Here are three 
examples of reconstruction (Fig.2-4) for N = 2 and four 
nodes: (-1.5;-1), (1.25;3.15), (4.4;6.8) and (8;7). Formula 
of the curve is not given. Algorithm of proposed retrieval, 
interpolation and modeling consists of five steps: first 
choice of nodes pi (feature vectors), then choice of nodes 
combination h(p1,p2,…,pm), choice of modeling function γ 
= F(α), determining values of αi ∈ [0;1] and finally the 
computations (1).

Figure 2. 2D modeling for γ = α2 and h = 0.
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So there are different data reconstructions with different 
modeling functions. As it can be observed, there is 
one extremum between two nodes for modeling with 
h ≠ 0 (Fig.3-4). Comparing with polynomial or spline 
interpolations, there is one very important question: how 
to avoid extremum between each pair of nodes and 
how to minimize interpolation error? Generally current 
methods do not answer this key question. Nowadays 
methods of interpolations rely mainly on polynomials, 
especially on cubic splines. It means that there are 
interpolation polynomials W(x) of degree 3 for every range 
of two successive interpolation nodes (xi,yi) and (xi+1,yi+1). 
This method of cubic splines is C2 class – this fact is very 
important in many applications of cubic interpolation. But 
second important feature of this method is interpolation 
error for function f(x):

So interpolation error depends on second derivative in the 
range of nodes [a;b] and this value cannot be estimated 
in general. Cubic spline can have extremum and may 
differ from interpolated function f(x) very much. Also 

interpolation polynomial Wn(x) of degree n (Lagrange or 
Newton) for n+1 nodes (x0,y0), (x1,y1) … (xn,yn) is connected 
with unpredictable error in general with calculations of 
derivative rank n+1:

Proposed method with h = 0 and α ∈ [0;1] represents 
formulas as convex combinations of nodes’ coordinates:

and interpolation error in general between two nodes looks 
as follows:

Proposed method is dealing with such significant 
features:

no extremum between two nodes;-	

interpolation error does not depend on the value of -	
derivative in the nodes or outside the nodes (even if 
derivative does not exist);

Figure 3. 2D reconstruction for γ = sin(α2·π/2) and h in (2).

And other interpolations for the same set of nodes:

Figure 4. 2D interpolation for γ = tan(α2·π/4) and h = (x2/x1)+ (y2/y1).
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interpolated function can be smooth in the nodes (class -	
C1);

reconstruction of the function that much differs from -	
the shape of polynomial, and not only function but any 
curve, also closed;

extrapolation is calculated with the same formulas for -	
α ∉ [0;1];

the idea of linear interpolation is applied for other -	
modeling functions, not only γ = α1;

convexity between the nodes is fixed using two -	
modeling functions:

	 γk = αs   or    γk = sin(αs·π/2)  with real parameter s > 0.

These two kinds of modeling functions are the simplest 
function, chosen via many calculations as follows:

γ-	 k = αs if convexity is not changing between the nodes 
(xk,yk) and (xk+1,yk+1);

γ-	 k = sin(αs·π/2) if convexity is changing between the 
nodes (xk,yk) and (xk+1,yk+1).

Theorem If
There are given nodes of continuous function 1.	 y = f(x): 
(x0,y0), (x1,y1) … (xn,yn), n ≥ 2;

There are formulas to calculate values between the 2.	
nodes:

α ∈ [0;1], k = 2,3…n-1, γk = αs or γk = sin(αs·π/2) with 
real parameter s > 0;

Three successive nodes are monotonic, for example 3.	
let’s assume:

y0  > y1 > y2  or  y0  < y1 < y2 .

Then there is the method of 2D curve interpolation and 
extrapolation such as:

T.1: There is no extremum between two successive nodes 
– interpolated function is monotonic in the range of two 
nodes.

T.2: Interpolated curve is class C0 (continuous) or C1 

(continuous and smooth).

T.3: Interpolation error does not depend on the value 
of derivative in the nodes or outside the nodes (even if 
derivative does not exist).

T.4: Convexity between two nodes (xk,yk) and (xk+1,yk+1) is 
fixed using modeling functions γk = αs (if convexity is not 
changing) or γk = sin(αs·π/2) (if convexity is changing).

T.5: Extrapolation is calculated with the same formulas for 
α ∉ [0;1].

Proof

T.1: Convex combination to calculate x(α) and y(α) between 
two nodes with strictly monotonic function γk gives us 
monotonic interpolation of the curve with no extremum 
between two nodes.

T.2: Interpolated curve is class C0 (continuous) just from 
definition of x(α) and y(α). Also smooth interpolation 
between nodes is achieved with the same. Only smooth 
function in the inner nodes must be proved. Here is 
shown how to achieve smooth function in the inner nodes 
– let’s assume then yk ≠ yk+1 for each k. If yk = yk+1 for 
any k, then according to T.1 there must be the simplest 
linear interpolation between nodes (xk,yk) and (xk+1,yk+1) 
and interpolated curve is not smooth in nodes (xk,yk) and 
(xk+1,yk+1).

For first three monotonic nodes (x0,y0), (x1,y1) and (x2,y2) 
there are calculations to fix parameter s for modeling 
function γ1 between nodes (x0,y0) and (x2,y2) interpolating 
node (x1,y1) inside:

If convexity is not changing between (x0,y0) and (x2,y2), 
then γ1 = αs and 

If convexity is changing between (x0,y0) and (x2,y2), then γ1 
= sin(αs·π/2) and

A1 (beginning of the loop in algorithm for k = 2,3…n-1): 
Having modeling function γ1 between nodes (x0,y0) and 
(x2,y2), it is possible for any α*→0 calculate

Then left difference quotient c is computed in the node 
(x2,y2): 

Of course if value of derivative in (x2,y2) is known, c = f 
’(x2) ≠ 0. Then parameter u is fixed to obtain left (c) and 
right difference quotient equal in (x2,y2) - it means smooth 
in this node. If y3 preserves the same monotonicity like y2 
and y1 (y1>y2>y3 or  y1<y2<y3) then

If y3 does not preserve the same monotonicity like y2 and y1 
then (because of different sign of left and right difference 
quotient)

And as it was: if convexity is not changing between (x2,y2) 
and (x3,y3), then γ2 = αs and
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If convexity is changing between (x2,y2) and (x3,y3), then γ2 
= sin(αs·π/2) and

So smooth interpolation function in the node (x2,y2) is 
achieved. And smooth interpolation for next range of 
nodes (x3,y3) and (x4,y4) is starting like loop A1 for k=3. 
And so on till last range of nodes (xn-1,yn-1) and (xn,yn) for 
k = n-1 in A1.

T.3: According to T.1 – interpolation error between two 
nodes for each k is equal:

T.4: These modeling functions are the simplest functions 
to achieve convexity changing or not.

T.5: Extrapolation left of first node (x0,y0) is done with 
modeling function γ1 and α>1. Extrapolation right of last 
node (xn,yn) is done with modeling function γn-1 and α<0. 
Then modeling function γn-1 must have domain with α<0. 
If not, there is possibility to define:

This theorem describes main features of proposed 
method.

Image Retrieval via High-dimensional 
Feature Reconstruction
After the process of image segmentation and during the 
next steps of retrieval, recognition or identification, there 
is a huge number of features included in N-dimensional 
feature vector. These vectors can be treated as “points” 
in N-dimensional feature space. For example in artificial 
intelligence there is a high-dimensional search space 
(the set of states that can be reached in a search problem) 
or hypothesis space (the set of hypothesis that can be 
generated by a machine learning algorithm). This paper 
is dealing with multidimensional feature spaces that are 
used in computer vision, image processing and machine 
learning.

Having monochromatic (binary) image which consists of 
some objects, there is only 2-dimensional feature space 
(xi,yi)  – coordinates of black pixels or coordinates of 
white pixels. No other parameters are needed. Thus any 
object can be described by a contour (closed binary curve). 
Binary images are attractive in processing (fast and easy) 
but don’t include important information. If the image has 
grey shades, there is 3-dimensional feature space (xi,yi,zi) 
with grey shade zi. For example most of medical images 
are written in grey shades to get quite fast processing. But 
when there are color images (three parameters for RGB 
or other color systems) with textures or medical data or 
some parameters, then it is N-dimensional feature space. 

Dealing with the problem of classification learning for 
high-dimensional feature spaces in artificial intelligence 
and machine learning (for example text classification 
and recognition), there are some methods: decision trees, 
k-nearest neighbors, perceptrons, naïve Bayes or neural 
networks methods. All of these methods are struggling 
with the curse of dimensionality: the problem of having too 
many features. And there are many approaches to get less 
number of features and to reduce the dimension of feature 
space for faster and less expensive calculations. This paper 
aims at inverse problem to the curse of dimensionality: 
dimension N of feature space (i.e. number of features) is 
unchanged, but number of feature vectors (i.e. “points” 
in N-dimensional feature space) is reduced into the set of 
nodes. So the main problem is as follows: how to fix the 
set of feature vectors for the image and how to retrieve the 
features between the “nodes”? This paper aims in giving 
the answer of this question.

Grey Scale Image Retrieval Using 3d Method

Binary images are just the case of 2D points (x,y): 0 or 1, 
black or white, so retrieval of monochromatic images is 
done for the closed curves (first and last node are the same) 
as the contours of the objects for N = 2 and examples as 
Fig.1-4. Grey scale images are the case of 3D points (x,y,s) 
with s as the shade of grey. So the grey scale between the 
nodes p1=(x1,y1,s1) and p2=(x2,y2,s2) is computed with γ = 
F(α) = F(α1,α2) as (1) and for example (4)-(6) or others 
modeling functions γi. As the simple example two successive 
nodes of the image are: left upper corner with coordinates 
p1=(x1,y1,2) and right down corner p2=(x2,y2,10). The image 
retrieval with the grey scale 2-10 between p1 and p2 looks 
as follows for a bilinear interpolation (4):

Figure 5. Reconstructed grey scale numbered at each pixel.

The feature vector of dimension N = 3 is called a voxel.

3.2   Color image retrieval

Color images in for example RGB color system (r,g,b) are 
the set of points (x,y,r,g,b) in a feature space of dimension 
N = 5. There can be more features, for example texture 
t, and then one pixel (x,y,r,g,b,t) exists in a feature space 
of dimension N = 6. But there are the sub-spaces of a 
feature space of dimension N1 < N, for example (x,y,r), 

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10
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(x,y,g), (x,y,b) or (x,y,t) are points in a feature sub-space 
of dimension N1 = 3. Reconstruction and interpolation 
of color coordinates or texture parameters is done like in 
section 3.1 for dimension N = 3. Appropriate combination 
of α1 and α2 leads to modeling of color r,g,b or texture t 
or another feature between the nodes. And for example 
(x,y,r,t), (x,y,g,t), (x,y,b,t)) are points in a feature sub-space 
of dimension N1=4 called doxels. Appropriate combination 
of α1, α2 and α3 leads to modeling of texture t or another 
feature between the nodes. For example color image, given 
as the set of doxels (x,y,r,t), is described for coordinates 
(x,y) via pairs (r,t) interpolated between nodes (x1,y1,2,1) 
and (x2,y2,10,9) as follows:

Figure 6. Color image with color and texture parameters (r,t) 
interpolated at each pixel.

So dealing with feature space of dimension N and using 
novel method there is no problem called “the curse of 
dimensionality” and no problem called “feature selection” 
because each feature is important. There is no need to reduce 
the dimension N and no need to establish which feature 
is “more important” or “less important”. Every feature 
that depends from N1-1 other features can be interpolated 
(reconstructed) in the feature sub-space of dimension N1 

< N via proposed method. But having a feature space of 
dimension N and using author’s method there is another 
problem: how to reduce the number of feature vectors 
and how to interpolate (retrieve) the features between the 
known vectors (called nodes). Difference between two 
given approaches (the curse of dimensionality with feature 
selection and author’s interpolation) can be illustrated as 
follows. There is a feature matrix of dimension N x M: N 
means the number of features (dimension of feature space) 
and M is the number of feature vectors (interpolation 
nodes) – columns are feature vectors of dimension N. One 
approach (Fig.7): the curse of dimensionality with feature 
selection wants to eliminate some rows from the feature 
matrix and to reduce dimension N to N1 < N. Second 
approach (Fig.8) for this method wants to eliminate some 
columns from the feature matrix and to reduce dimension 
M to M1 < M.

2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1

2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,2
2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10,3
2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4 10,4
2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 10,5
2,6 3,6 4,6 5,6 6,6 7,6 8,6 9,6 10,6
2,7 3,7 4,7 5,7 6,7 7,7 8,7 9,7 10,7
2,8 3,8 4,8 5,8 6,8 7,8 8,8 9,8 10,8

2,9 3,9 4,9 5,9 6,9 7,9 8,9 9,9 10,9

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3
2 3 4 4 4 4 4 4 4 2 3 4 4 4 4 4 4 4
2 3 4 5 5 5 5 5 5 2 3 4 5 5 5 5 5 5
2 3 4 5 6 6 6 6 6 → 2 3 4 5 6 6 6 6 6
2 3 4 5 6 7 7 7 7 2 3 4 5 6 7 7 7 7
2 3 4 5 6 7 8 8 8
2 3 4 5 6 7 8 9 9
2 3 4 5 6 7 8 9 10

Figure 7. The curse of dimensionality with feature selection wants to eliminate some rows from the feature matrix and to reduce 
dimension N.

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3
2 3 4 4 4 4 4 4 4 2 3 4 4 4 4 4
2 3 4 5 5 5 5 5 5 2 3 4 5 5 5 5
2 3 4 5 6 6 6 6 6 → 2 3 4 5 6 6 6
2 3 4 5 6 7 7 7 7 2 3 4 5 6 7 7
2 3 4 5 6 7 8 8 8 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9 9 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8

Figure 8. Proposed method wants to eliminate some columns from the feature matrix and to reduce dimension M.
So after feature selection (Fig.7) there are nine feature 
vectors (columns): M = 9 in a feature sub-space of 
dimension N1 = 6 < N (three features are fixed as less 
important and reduced). But feature elimination is a very 

unclear matter. And what to do if every feature is denoted 
as meaningful and then no feature is to be reduced? For this 
method (Fig.8) there are seven feature vectors (columns): 
M1 = 7 < M in a feature space of dimension N = 9. Then 
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no feature is eliminated and the main problem is dealing 
with interpolation or extrapolation of feature values, like 
for example image retrieval (Fig.5-6).

Recognition Tasks via High-Dimensional 
Feature Vectors’ Interpolation
The process of biometric recognition and identification 
consists of three parts: pre-processing, image segmentation 
with feature extraction and recognition or verification. 
Pre-processing is a common stage for all methods with 
binarization, thinning, size standardization. Proposed 
online approach is based on 2D curve modeling and 
multi-dimensional feature vectors’ interpolation. Feature 
extraction gives the key points (nodes as N-dimensional 
feature vectors) that are used in curve reconstruction and 
identification. Proposed method enables signature and 
handwriting recognition, which is used for biometric 
purposes, because human signature or handwriting consists 
of non-typical curves and irregular shapes (for example 
Fig.2-4). The language does not matter because each 
symbol is treated as a curve. This process of recognition 
consists of three parts: 

Before recognition – continual and never-ending 1.	
building the data basis: patterns’ modeling – choice of 
nodes combination, function (1) and values of features 
(pen pressure, speed, pen angle etc.) appearing in high 
dimensional feature vectors for known signature or 
handwritten letters of some persons in the basis; 

Feature extraction: unknown author – fixing the values 2.	
in feature vectors for unknown signature or handwritten 
words: N-dimensional feature vectors (x,y,p,s,a,t) with 
x,y-points’ coordinates, p-pen pressure, s-speed of 
writing, a- pen angle or any other features t;

The result: recognition or identification - comparing 3.	
the results of interpolation for known patterns from the 
data basis with features of unknown object.

Signature Modeling and Multidimensional 
Recognition

Human signature or handwriting consists mainly of non-
typical curves and irregular shapes. So how to model two-
dimensional handwritten characters via author’s method? 
Each model has to be described (1) by the set of nodes, 
nodes combination h and a function γ=F(α) for each letter. 
Other features in multi-dimensional feature space are 
not visible but used in recognition process (for example 
p-pen pressure, s-speed of writing, a-pen angle). Less 
complicated models can take h(p1,p2,…,pm) = 0 and then 
the formula of interpolation (1) looks as follows:

                                 .                                                        

Formula (7) represents the simplest linear interpolation 

if γ = α. Here are some examples of non-typical curves 
and irregular shapes as the whole signature or a part of 
signature, reconstructed via proposed method for y=2x and 
seven nodes (x,y) like Fig.1:

Figure 9. 2D interpolation for

And two other interpolations for the same set of nodes:

Figure 10. 2D modeling for 

So there are different data reconstructions with different 
modeling functions. Other interpolations for the same set 

of nodes and combination h=0 are as follows:

Figure 11. 2D reconstruction for
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Fig. 12. 2D modeling for .

Figure 13. 2D modeling for 

Fig.9-13 are two-dimensional subspace of N-dimensional 
feature space, for example (x,y,p,s,a,t) when N = 6. If the 
recognition process is working “offline” and features p-pen 
pressure, s-speed of writing, a- pen angle or another feature 
t are not given, the only information before recognition is 
situated in x,y-points’ coordinates.

After pre-processing (binarization, thinning, size 
standarization), feature extraction is second part of biometric 
identification. Choice of characteristic points (nodes) for 
unknown letter or handwritten symbol is a crucial factor 
in object recognition. The range of coefficients x has to be 
the same like the x range in the basis of patterns. When the 
nodes are fixed, each coordinate of every chosen point on the 
curve (x0

c,y0
c), (x1

c,y1
c),…, (xM

c,yM
c) is accessible to be used 

for comparing with the models. Then modeling function 
γ = F(α) and nodes combination h have to be taken from 
the basis of modeled letters to calculate appropriate second 
coordinates yi

(j) of the pattern Sj for first coordinates xi
c, i = 

0,1,…,M. After interpolation it is possible to compare given 
handwritten symbol with a letter in the basis of patterns. 
Comparing the results of this interpolation for required 
second coordinates of a model in the basis of patterns 
with points on the curve (x0

c,y0
c), (x1

c,y1
c),…, (xM

c,yM
c), one 

can say if the letter or symbol is written by person P1, 
P2 or another. The comparison and decision of recognition 
is done via minimal distance criterion. Curve points of 
unknown handwritten symbol are: (x0

c,y0
c), (x1

c,y1
c),…, 

(xM
c,yM

c). The criterion of recognition for models Sj = 
{(x0

c,y0
(j)), (x1

c,y1
(j)),…, (xM

c,yM
(j)), j=0,1,2,3…K} is given 

as:

                        (8)

Minimal distance criterion helps us to fix a candidate for 
unknown writer as a person from the model Sj in the basis. 
If the recognition process is “online” and features p-pen 
pressure, s-speed of writing, a- pen angle or some feature t 
are given, then there is more information in the process of 
author recognition, identification or verification in a feature 
space (x,y,p,s,a,t) of dimension N = 6 or others. Some 
person may know how the signature of another man looks 
like (for example Fig.2-4 or Fig.9-13), but other extremely 
important features p,s,a,t are not visible. Dimension N of 
a feature space may be very high, but this is no problem. 
As it is illustrated (Fig.7-8) the problem connected with 
the curse of dimensionality with feature selection does 
not matter. There is no need to fix which feature is less 
important and can be eliminated. Every feature is very 
important and each of them can be interpolated between the 
nodes using author’s high-dimensional interpolation. For 
example pressure of the pen p differs during the signature 
writing and p is changing for particular letters or fragments 
of the signature. Then feature vector (x,y,p) of dimension 
N1 = 3 is dealing with p interpolation at the point (x,y) via 
modeling functions (4)-(6) or others. If angle of the pen 
a differs during the signature writing and a is changing 
for particular letters or fragments of the signature, then 
feature vector (x,y,a) of dimension N1 = 3 is dealing with 
a interpolation at the point (x,y) via modeling functions 
(4)-(6) or others. If speed of the writing s differs during the 
signature writing and s is changing for particular letters 
or fragments of the signature, then feature vector (x,y,s) 
of dimension N1 = 3 is dealing with s interpolation at the 
point (x,y) via modeling functions (4)-(6) or others. This 
3D interpolation is the same like in section 3.1 grey scale 
image retrieval but for selected pairs (α1,α2) – only for the 
points of signature between (x1,y1,2) and (x2,y2,10):

2 3 0 0 0 0 0 0 0

0 0 4 5 0 0 0 0 0

0 0 0 0 6 0 0 0 0

0 0 0 0 0 7 0 0 0

0 0 0 0 0 0 8 0 0

0 0 0 0 0 0 0 9 0

0 0 0 0 0 0 0 0 10

0 0 0 0 0 0 0 0 10

0 0 0 0 0 0 0 0 10

Figure 14. Reconstructed speed of the writing s at the pixels of 
signature.
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If a feature sub-space is dimension N1 = 4 and feature 
vector is for example (x,y,p,s), then 4D interpolation is 
the same like in section 3.2 color image retrieval but for 
selected pairs (α1,α2) – only for the points of signature 
between (x1,y1,2,1) and (x2,y2,10,9):

2,1 3,1 0 0 0 0 0 0 0

0 0 4,2 5,2 0 0 0 0 0

0 0 0 0 6,3 0 0 0 0

0 0 0 0 0 7,4 0 0 0

0 0 0 0 0 0 8,5 0 0

0 0 0 0 0 0 0 9,6 0

0 0 0 0 0 0 0 0 10,7

0 0 0 0 0 0 0 0 10,8

0 0 0 0 0 0 0 0 10,9

Figure 15. Reconstructed pen pressure p and speed of the 
writing s as (p,s) at the pixels of signature.

If a feature sub-space is dimension N1 = 5 and feature 
vector is for example (x,y,p,s,a), then 5D interpolation is 
the same like in section 3.2 color image retrieval but for 
selected pairs (α1,α2) – only for the points of signature 
between (x1,y1,2,1,30) and (x2,y2,10,9,60):

2,1,30 3,1,30 0 0 0 0 0 0 0
0 0 4,2,32 5,2,34 0 0 0 0 0
0 0 0 0 6,3,37 0 0 0 0
0 0 0 0 0 7,4,43 0 0 0
0 0 0 0 0 0 8,5,45 0 0
0 0 0 0 0 0 0 9,6,46 0
0 0 0 0 0 0 0 0 10,7,53
0 0 0 0 0 0 0 0 10,8,56
0 0 0 0 0 0 0 0 10,9,60

Figure 16. Reconstructed pen pressure p, speed of the writing s 
and angle a as (p,s,a) at the pixels of signature.

Fig.14-16 are the examples of denotation for the features 
that are not visible during the signing or handwriting but 
very important in the process of “online” recognition, 
identification or verification. Even if from technical 
reason or other reasons only some points of signature 
or handwriting (feature nodes) are given in the process 
of “online” recognition, identification or verification, 
the values of features between nodes are computed 
via multidimensional author’s interpolation like for 
example between (x1,y1,2) and (x2,y2,10) on Fig.14, 
between (x1,y1,2,1) and (x2,y2,10,9) on Fig.15 or between 
(x1,y1,2,1,30) and (x2,y2,10,9,60) on Fig.16. Reconstructed 
features are compared with the features in the basis of 
patterns like parameter y in (8) and appropriate criterion 
gives the result.

So persons with the parameters of their signatures are 

allocated in the basis of patterns. The curve does not have 
to be smooth at the nodes because handwritten symbols 
are not smooth. The range of coefficients x has to be the 
same for all models because of comparing appropriate 
coordinates y. Every letter or a part of signature is modeled 
via three factors: the set of high-dimensional feature nodes, 
modeling function γ=F(α) and nodes combination h. These 
three factors are chosen individually for each letter or a 
part of signature therefore this information about modeled 
curves seems to be enough for specific multidimensional 
curve interpolation and handwriting identification. What 
is very important, novel N-dimensional modeling is 
independent of the language or a kind of symbol (letters, 
numbers, characters or others). One person may have 
several patterns for one handwritten letter or signature. 
Summarize: every person has the basis of patterns for 
each handwritten letter or symbol, described by the set 
of feature nodes, modeling function γ = F(α) and nodes 
combination h. Whole basis of patterns consists of models 
Sj for j = 0,1,2,3…K. Proposed interpolation is used for 
parameterization and reconstruction of curves in the plane.

Conclusion
The autor’s method enables interpolation and modeling 
of high-dimensional data using features’ combinations 
and different coefficients γ: polynomial, sinusoidal, 
cosinusoidal, tangent, cotangent, logarithmic, exponential, 
arc sin, arc cos, arc tan, arc cot or power function. 
Functions for γ calculations are chosen individually at 
each data modeling and it is treated as N-dimensional 
function: γ depends on initial requirements and features’ 
specifications. Novel method leads to data interpolation as 
handwriting or signature identification and image retrieval 
via discrete set of feature vectors in N-dimensional feature 
space. So this method makes possible the combination of 
two important problems: interpolation and modeling in 
a matter of image retrieval or writer identification. Main 
features of the method are: this interpolation develops a 
linear interpolation in multidimensional feature spaces 
into other functions as N-dimensional functions; nodes 
combination and coefficients γ are crucial in the process 
of data parameterization and interpolation: they are 
computed individually for a single feature; modeling of 
closed curves.
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